
Second draft Report for

Remote Sensing for Assessment of Water budget in Wadies Zabid & Rima

Understanding analysis the Water Balance of the Wadies Zabeed and Rima western wadies - Yemen

Dr. Ayoub Almhab, PhD: Remote Sensing

Sana'a - November 2011

TABLE OF CONTENTS

TABLE OF CONTENT	
DEFINITIONS RELATED TO EVAPOTRANSPIRATION	
1. INTRODUCTION	
4. METHODOLOGY	
4.1 PRECIPITATION ESTIMATION BASED TRMM	
4.2 EVAPOTRANSPIRATION USING M-SEBAL	23
4.3 LAND USE CCLASSIFICATION	24
4.4 FIELD WORK	25
4.5 CLASSIFICATION PROEDURES	25
5. WADIES ZABEED AND RIMA'A WTER MNAGEMENT	
5.1 PRECIPITATION	27
5.2 ACTUAL EVAPOTRANSPIRATION	
5.3 LAND USE	
5.4 WATER USE	
5.5 WATER BALANCE	
6. CONCLUSIONS	
7. FINDING SATELLITE IMAGES ON THE WEB	
8. REFERENCES	
LIST OF APPENDICES	
A. A SCIENTIFIC VALIDATION OF TRMM IMAGES FOR Y	
B. A SCIENTIFIC DESCRIPTION OF M-SEBAL PROCEDURI	Ľ47

DEFINITIONS RELATED TO EVAPOTRANSPIRATION

ETact actual evapotranspiration

Evapotranspiration that occurs from plant and soil under *actual* field conditions. In this study ETact is calculated spatially using satellite images and the SEBAL algorithm.

ETpot potential evapotranspiration

Evapotranspiration that maximally occurs from plant and soil under actual field and *optimal* soil water conditions.

ETpot is calculated spatially using satellite images and the SEBAL algorithm.

ETrain evapotranspiration as result from rainfall

Actual evapotranspiration that occurs from rainfed areas, i.e. areas where rainfall is the only water source.

ETirr evapotranspiration as result from irrigation

Incremental actual evapotranspiration that occurs from irrigated agricultural areas and irrigation practices in excess of ET that originates from rainfall.

ETgross gross evapotranspiration

Gross evapotranspiration is equal to actual evapotranspiration of a certain nonhomogeneous area that is composed of irrigated and non-irrigated land It is the sum of evapotranspiration from rainfall and evapotranspiration from irrigation:

ETgross = *ETrain* + *ETirr*

1. INTRODUCTION

In recent years, water resources management has become an important issue. This is especially true with the increased demand and competition for fresh water between different users and climate change. Consequently, monitoring the consumption of water has become one of the most popular issues regarding water resources management (almhab, 2009). Water strategy requires scientifically sound information on water availability which includes the quantification of spatial and temporal changes of water balance components like rainfall and evapotranspiration. These components are inextricably linked with climate, so the prospect of global climate change has serious implications for water balance partially in arid and semi arid regions. In order to investigate the best methodology input data to hydrological and water energy balance models that are the central support for hydrological decision making (mamo, 2010).

Precipitation (P) and Evapotranspiration (ET) are the main parameter to estimation of water balance; they give highlight information on water availability. Currently remote sensing data which available free online with different algorithms and models was develop is widely used for estimation of these two parameters. Models and data source selection for accurate estimate of P and ET from remote sensing observation are also continuously improving. The data for this paper were two Satellite product from MODIS and TRMM and 14 ground metrological station (Y-NWRA) on the study area Yemen. In this study that rainfall estimation from TRMM images and ET was estimated from MODIS satellite images and ground based data using M-SEBAL (Modified -Surface Energy Balance Algorithm for Land) model. Daily P and ET for Yemen using satellite image and ground metrological station was comparison. In addition the performance of M-SEBAL model over different land cover classes was tested by comparison of daily ET from the model with ETa estimation from ground metrological station over different land cover. Finally climatologically water balance estimation "Precipitation minus evapotranspiration" was carried out over rainfed crop land during study period Jane to December 2007using rainfall product from TRMM images and daily ET estimated by M-SEBAL model from MODIS images.

The objectives of this research are to estimate of precipitation, evapotranspiration and climatology water balance. (Precipitation minus evapotranspiration" in large area by combined used of remote sensing and based meteorological data.

Second draft Report for Remote Sensing for Assessment of Water budget in Wadies Zabid LRima Dr Ayoub Almhab

4. METHODOLOGY

This chapter introduces the main techniques used to identify the Precipitations based TRMM satellite images, Evapotranspiration and water balance for wadi Zabeed and wadi Rema in wester wadie's in Yemen. The algorithm used to map the water consumption is the Modified Surface Energy Balance Algorithm for Land (M-SEBAL). The M-SEBAL algorithm uses as main input satellite and weather data for predicting evapotranspiration (ET) from data from the Moderate Resolution Imaging Spectrometer (MODIS) on the Terra satellite and ground meteorological data was developed in the Republic of Yemen.

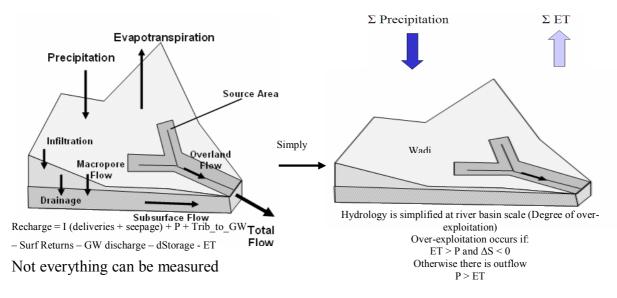


Figure 14 diagram summarize the methodology applied in this study for estimation of water balance in Wasi's Zabeed & Rima Yemen

4.1 PRECIPITATION ESTIMATION BASED TRMM SATELLITE

Satellite-based precipitation estimation has quite long story and became one of the more intense research topics in the discipline of satellite meteorology. The major problem of all methods is the in-direct relation between the precipitation on the ground and the measured satellite signal; therefore various studies have been carried out to address and solve these issues. This part will give a brief explanation of the main types of rainfall retrievals from space using VIS/IR, PMW, active sensors and blending techniques.

Rainfall data for daily periods from January 2010 to December 2010, measured and collected by the National Water Resources Authority (NWRA) Republic of Yemen, were used to prepare the monthly accumulated rainfall data. The monthly TRMM 3B43(V6) accumulated rainfall($0.25^{\circ} \times 0.25^{\circ}$) product acquired from TRMM Online Visualization and Analysis System (TOVAS) is used to prepare it satellite database.

In this study the monthly rainfall product of TRMM 3B43, which is the combination of TRMM Precipitation Radar (PR) and TRMM Microwave Imager (TMI), was compared with the values of ground-based NWRAGS (rain gauges) throughout Yemen. Although Tropical Rainfall Measuring Mission (TRMM) precipitation products have been extensively validated at ground sites around the world, none of these sites lies in Yemen, therefore in the paper (Almhab and Tol,2010) has been tried to validated TRMM (3B43 product) annually, monthly and daily periods in order to using TRMM satellite data in Yemen meteorological studies. For a more technical description of validation the TRMM data for Yemen see Appendix 1

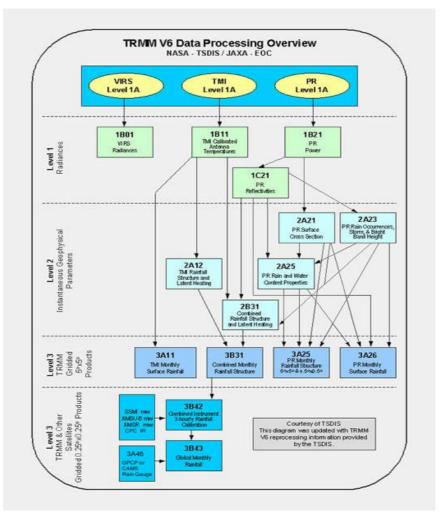


Figure 15 TRMM data processing and products

4.2 EVAPOTRANSPIRATION ESTIMATION USING M-SEBAL MODEL

M-SEBAL model was develop by introducing some changes into the existing SEBAL model which developed from (Bastiaanssen. et. al, 1998) .Notably, the inclusion of terrain, mountains and deserts effect in to calculations of surface radiation.

The M-SEBAL model was calculated using model builder in ERDAS IMAGINE 8.5 image processing package. All model parameters are programmed in to the model builder and values are computed automatically based on the input data. The general flowchart for the modified SEBSL model is shown by Figure 14.

The method uses the energy budget equation to calculate each pixel $\lambda(ET_{ins})$ (instant latent heat loss) at the time of the satellite over flight.

$$\lambda(ET_{ins}) = R_n - G - H$$
 Eq. 1

Where: $\lambda(ET_{ins})$ is the instant latent heat loss (w/m²), which is calculated as a residual of the energy budget, λ is the latent heat (i.e. the heat needed to evaporate unit mass of water), ET_{ins} is the rate of evapotranspiration at the time of the satellite overflight, R_n is net solar raids (w/m²), G is soil heat flux into the soil (w/m²), H is the sensible heat flux into the air (w/m²).

The M-SEBAL algorithm can be used to compute maps of actual evapotranspiration, crop coefficient (Kc) and crop water requirement (CWR). In the current project the main focus lies on actual evapotranspiration (ET). The key input data for M-SEBAL consists of raster values of spectral radiance in the visible, near-infrared and thermal infrared part of the spectrum and DEM images. Hence, the measurements are unique for every pixel.

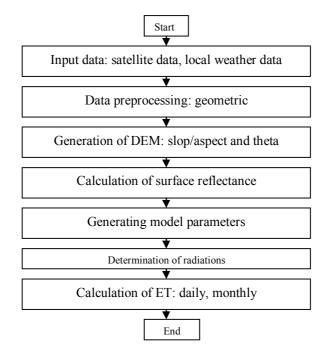


Figure 14 the general flowchart of the M-SEBAL model

Satellite radiances will be converted first into land surface characteristics such as surface albedo, leaf area index, vegetation index and surface temperature. The land surface characteristics can be derived from different types of satellites in this study derived from Landsat 7 ETM images and MODIS (MODerate resolution Imaging Spectroradiometer) images. For a more technical description of M-SEBAL model see Appendix 2.

2.4 Theory

2.4.1 Net Radiation (R_n) : The radiation balance at the Earth's surface is composed of four spectral radiant fluxes, the incoming short wave (0.14 to 4 µm) radiation that arrives from the sun $(Rs\downarrow)$, the amount of this energy that is reflected from the surface $(R_s\uparrow)$, the incoming long wave (> 4 µm) radiation from the atmosphere $(R_L\downarrow)$, and the amount of long wave radiation emitted from the surface $(R_L\uparrow)$. Thus the net radiation is:

$$R_n = R_{s\downarrow} - R_{s\uparrow} + R_{L\downarrow} - R_{L\uparrow}$$
 Eq. 2

The instantaneous net amount of radiation received by a surface can be written in the form:

$$R_n = (1 - \alpha)R_{s\downarrow} + \varepsilon_a \sigma T_a^4 - \varepsilon_s \sigma T_s^4 \qquad \text{Eq. 3}$$

where R_s is the incoming short-wave solar radiation, α is the surface short-wave albedo, σ is the Stefan–Boltzmann constant (5.67 x 10⁻⁸ W m⁻² K⁻⁴), T_a is the air temperature measured at the wet pixel (K), T_s derived from a remotely sensed radiometric surface temperature (K), ε_a is the air emissivity taking as [Bastiaanssen, 1995]:

$$\epsilon_a = 1.08 (-\ln \tau_{sw})^{0.265}$$
 Eq. 4

where τ_{sw} is two way atmospheric transmissivity $[\tau_{sw} = 0.75 + 2x10^{-5} z], z$ is elevation meter. where ε_s = surface emissivity which is calculated from normalized vegetation index (NDVI) using the logarithmic relation of Van de Griend and Owe (1993) as:

$$\varepsilon_{\rm s} = 1.0094 + 0.047*\ln{\rm (NDVI)}$$
 Eq. 5

The weighting factors for each band are the proportions of solar radiation incident at the earth surface in each segment. This approach was adopted here to derive α from narrow bands. α is calculated by the equation in Tasume et al. (2000)for LANDSAT surface reflectance data.

$$\rho^{TOA} = 0.293 \rho I^{TOA} + 0.274 \rho 2^{TOA} + 0.233 \rho 3^{TOA} + 0.157 \rho 4^{TOA} + 0.033 \rho 5^{TOA} + 0.011 \rho 7^{TOA}$$
Eq. 6a

pi is the reflectance for LANDSAT data band i. We adopted the equation of Chemin et al. (2000) for NOAA-AVHRR surface reflectance data.

$$\rho^{TOA} = 0.035 + 0.0545 \rho I^{TOA} + 0.32 \rho 2^{TOA}$$
 Eq. 6b

pi is the reflectance for NOAA-AVHRR data band i.

The incoming short wave radiation $(R_s \not)$ was computed in this study, by equation (7) as follows (Fu 1998, Tasuni et al. 200) in which the diffuse radiation was neglected:

$$R_{s} \downarrow = \frac{G_{SC}}{d_{r}^{2}} \cos\theta \times \tau \qquad \text{Eq. 7}$$

Where G_{sc} is the solar constant(1367 w/m²), d_r is inverse squared relative distance earth-sun (dimensionless) calculated by $dr=1+0.033\cos\{[2\pi(DOY)]/365\}$, $\cos\theta$ is cosine of the solar zenith angle calculated by $\cos\theta=\cos(\pi/2-\phi)$ where ϕ is sun elevation angle in radians (in the flat area) in the slop and mountain terrain areas (like our case study) solar incident angle changes with surface slope and aspect. Therefore the equation suggested by Duffie and Bekman,(1991) is applied.

Eq. 8

$$\cos\theta = \sin(\delta)\sin(\phi)\cos(s) - \sin(\delta)\cos(\phi)\sin(s)\cos(\gamma) + \cos(\delta)\cos(\phi)\cos(s)\cos(\omega)$$

+ $cos(\delta)sin(\phi)sin(s)cos(\gamma)cos(\omega)$

Where: δ is solar declination(rad); ϕ is geographic latitude of the pixel (rad); s is ground slope (rad); γ is the surface aspect angle (rad); ω is the hour angle of the sun(rad).

2.4.2 Soil Heat Flux (G):

Soil heat flux is usually measured with sensors buried just beneath the soil surface. A remote measurement of G is not possible but several studies have shown that the day time ratio of G/R_n is related to among other factors, such as the normalized difference vegetation index(NDVI). In this study equation (9) is adapted with the regression equation.

G as an empirical fraction of the net radiation using surface temperature, surface albedo (α) and NDVI and was adopted here to compute *G* as:

$$G = R_{n} \left(-0.4005 NDVI^{2} + 0.2207 NDVI + 0.2715\right)$$
 Eq. 9

Where T_s is the surface temperature, NDVI is the normalized difference vegetation index. is calculated as the following:

$$NDVI = (R_4 - R_3) / (R_4 + R_3)$$
 Eq. 10

where R_4 and R_3 are the reflectance data of bands 4 and 3 in LANDSAT and bands 2 and 1 in NOAA-AVHRR respectively.

2.4.3 Sensible Heat Flux (H):

For the sensible heat flux calculation, two pixels are chosen in the satellite data. One pixel is a wet pixel that is a well-irrigated crop surface with full cover and the surface temperature (T_s) close to air temperature (T_a) The second pixel is a dry bare agricultural field where λE is assumed to be 0. The two pixels tie the calculations for all other pixels between these two points. At the dry pixel, assume $\lambda E = 0$, then according to equation (1) and the definition of specific heat capacity

$$H = \frac{\rho c_{\rm p} dT}{r_{\rm ah}}$$
 Eq. 12

Where ρ is the air density (mol m⁻³), c_p is the specific heat of air (29.3 J mol⁻¹ °C⁻¹), dT is the near surface temperature difference (K), r_{ah} is the aerodynamic resistance to heat transport m/s, where

$$r_{ah} = \frac{\ln\left(\frac{z_2}{z_1}\right)}{u^* k}$$
 Eq. 13

 z_1 is a height just above the zero displacement distance height of plant canopy set to 0.1 m for each pixel, and z_2 is the reference height just above the plant canopy set to 2 m for each pixel, u* is the friction velocity (m/s), and k is the von Karman constant (0.4).

$$u^* = \frac{u(z)k}{\ln(\frac{z-d}{z_m})}$$
Eq.14

Where u(z) is the wind speed at height of z, d is the zero displacement height (m, d=0.65h), h is the plant height (m), and z_m is the roughness length (m, z_m =0.1h)[Campbell and Norman 1998]. According to equations 13-14 and the input data, dT_{dry} , dT at the dry spot can be calculated. At the wet spot, assume H=0 and dT_{wet} =0 (dT at the wet spot). Then according to the surface temperature at the dry and wet spots (T_{sdry} and T_{swet}), we can get one linear equation for each pixel (wing et al, 2006),

$$dT = \left(\frac{dT_{dry} - dT_{wet}}{T_{s\,dry} - T_{s\,wet}}\right) \times T_s - \left(\frac{dT_{dry} - dT_{wet}}{T_{s\,dry} - T_{s\,wet}}\right) \times T_{s\,wet}$$
Eq. 15

Then, according to the equation, the *H* each pixel can be calculated according to equations 11-14. We assumed at 200 m the wind speed is the same for each pixel and the wind speed at 200 m is calculated for the weather station first, and then u* can be solved for each pixel (equation 14). The parameter *d* in equation 14 is set to 0 which is negligible when z = 200 m. The z_m for each pixel is calculated by a regression equation according to the pixel value. The equation is obtained by three pairs of known values of z_m and *NDVI*.

Due to the fact that atmospheric stability may have effects on H, the atmospheric correction is conducted (16). First the u* and wind speed at 200 m at the local weather station are calculated. Then the z_m , u^* and dT for each pixel are computed. Then the r_{ah} and H without the atmospheric correction are obtained.

For atmospheric correction, the stability parameter, the Obukhove length, L (m) is calculated. Then using the stability parameter, u^* , r_{ah} and H are corrected. Then an iteration is conducted for L, u^*, r_{ah} and H calculation until H does not change more than 10%. The correction equation is as follows (Campbell and Norman 1998; Stull 2001).

$$L = -\frac{u^{*^3}T_s}{kgH}$$
 Eq. 16

When L<0, H is positive and heat is transferred from the ground surface to the air, under unstable condition; when L>0, H is negative and heat is transferred from air to ground

surface, under stable condition; when L=0, no heat flux occurs, and is under neutral condition, because the satellite over flight occurred at local noon time, the atmosphere should have been unstable. Thus, when a stable condition occurred, we forced L=0 (neutral). After H is corrected by the atmospheric effects, $\lambda(ET_{ins})$ for each pixel is calculated using equation 1.

2.4.4 Regional ET model:

The actual 24 hour ET can be estimated from the instantaneous evaporative fraction EF, and the daily averaged net radiation, $R_{n,24}$ (Tasumi, et al, 2000):

$$ET_{24} = EF\{R_{n,24}[106(2.501-0.002361T_s)]\}$$
 Eq. 17

where ET_{24} is the actual 24-hour evaporation (mm/day), $R_{n,24}$ is the 24-h net radiation (W/m²), T_s the surface temperature (°C). The EF is the instantaneous evaporative fraction calculated as:

$$EF = \lambda ET / (R_n - G)$$
 Eq. 18

where R_n is the instantaneous net radiation and G is the instantaneous soil heat flux. Finally, the instantaneous latent heat of evapotranspiration (λ ET) may be computed as the residual of the surface energy balance equation (Eq. 1). However, in order to facilitate comparison with the sensible heat flux, is use made of the instantaneous evaporative fraction *EF*, defined as follows :

$$EF = (R_n - G) - H/(R_n - G)$$
 Eq. 19

Assuming that the evaporative fraction (EF) is constant over the day the daily average sensible heat (H_{24}) can be derived from EF and the daily average net radiation (R_{n24}) as follows :

$$H_{24} = (1 - EF)R_{n,24}$$
 ((W/m²)) Eq. 20

The improved daily net radiation parameterization scheme and daily actual evapotranspiration.

The daily net radiation can be expressed as:

$$R_{n24} = (1 - \alpha)R_{s24} + R_{L24}$$
 ((W/m2)) Eq. 21

Where R_{s24} is the daily solar radiation and R_{L24} is the daily net long wave radiation (wm⁻²). As the mountain and terrain of our study area is complex with undulations, the impact topography, the impact of slope and azimuth of surface on available radiation shod be considered pixel by pixel in the calculated instantaneous and daily net radiation, the shaded areas (pixels) were excluded from imageries with the model maker in ERDAS imagine software brakeage. Through importing parameters of solar azimuth and solar elevation at the satellite overpass time. The daily net radiation is estimated by an integral of equation (7) transmittance for one-way transmittance τ with (c+dn/N):

$$R_{s24} = (c + d\frac{n}{N}) * \int_{-\pi}^{+\pi} \left[\frac{G_{sc}}{d_r^2} \sin \delta . a + \cos \delta . \cos \omega . b + \cos \delta \sin s . \sin \gamma . \sin \omega \right] d\omega$$
 Eq. 22

$$R_{s24} = (c + d\frac{n}{N}) * \int_{\omega l}^{\omega 2} \left[\frac{G_{sc}}{d_r^2} \sin \delta . a + \cos \delta . \cos \omega . b + \cos \delta \sin s . \sin \gamma . \sin \omega \right] d\omega$$
 Eq. 23

$$R_{a24} = (c + d\frac{n}{N}) \cdot \frac{G_{sc}}{2\pi d_r^2} \left[a \cdot \sin \delta \cdot (\omega_2 - \omega_1) + b \cdot \cos \delta (\sin \omega_2 - \sin \omega_1) - \sin s \cdot \sin \gamma \cos \delta (\cos \omega_2 - \cos \omega_1) \right] \qquad \text{Eq}$$

24

$$a = \sin\phi\cos s - \cos\phi\sin s.\cos\gamma$$

$$b = \cos\phi\cos s + \sin\phi\sin s.\cos\gamma$$

$$N = \frac{12(\omega_2 - \omega_1)}{\pi}$$
Eq. 25

Where: c and d are coefficients of the solar radiation depending on the latitude climate and other factors of study area, respectively; c+d is the fraction of exterritorial radiation reaching the earth on clear sky days. n is the actual sunshine duration, N the potential sunshine duration, ω_1 and ω_2 are the sunrise and sunset angle, respectively. The difficulty in retrieval of the daily solar radiation focuses on calculation of the sunrise and sunset angle for the tilted surfaces.

The sunrise and sunset angles for horizontal surfaces are given by Fu (1983) and Tasumi et al. (2000)

$$\omega_{H} = \cos^{-1}(-\tan\phi.\tan\delta)$$
 Eq. 26

The sunrise and sunset angle for tilted surfaces can be obtained by simple mathematical manipulation from equation (8) by setting $\cos\theta=0$, leading to

$$\omega = \cos^{-1} \left(\frac{-a.b.\tan\delta \pm \sin\gamma.\sin s\sqrt{1 - a^2(1 + \tan^2\delta)}}{1 - a^2} \right)$$
Eq. 27

The positive or negative sign of equation (above) in the numerator are determined by equation:

$$\omega = \sin^{-1} \left(\frac{-a \cdot \sin \gamma \cdot \sin s \cdot \tan \delta \pm b \sqrt{1 - a^2 \left(1 + \tan^2 \delta\right)}}{1 - a^2} \right)$$
Eq. 28

Let ω_{s1} and ω_{s2} be the roots of ω , respectively, and $\omega_{s1} > \omega_{s2}$. Note the surface receives the solar radiation only if $\cos \theta$ in equation (8) is greater than 0. several relationships are given below to determine the sunrise and sunset angles (ω_1 , ω_2),

- if $\omega_{s1} \le \omega \le \omega_{s2}$ and $\cos \theta \ge 0$, then $\omega_{s1} \ge \omega_{s2}$, $\omega_{s2} \le \omega_{s1}$;

- if $\omega \leq \omega_{s1}$, $\omega s1 > \! \omega_{s2}$ and cos>=0 then $\omega_1 \leq \omega_{s1}, \omega_2 \geq \omega_{s2}.$

- Meanwhile, the sunrise and sunset angles for tilted surfaces must also satisfy the condition that sunrise is no earlier and sunset is no later than those for horizontal surfaces. Namely $\omega_1 \ge - \mid \omega_H \mid$, $\omega_2 \ge \omega_{s2} \le \mid \omega_H \mid$.

Daily net long wave radiation:

$$R_{L24} = \varepsilon_a \sigma T_a^4 - \varepsilon_s s T_s^4$$
 Eq. 29

Where ε_a is the daily average atmospheric emissivity (Campbell and Norman, 1998) and T_a is the daily mean atmospheric temperature (k). due to the surface temperature obtain at 10h30, it could represent the daily average surface temperature for estimation of the surface daily long wave radiation (granger, 2000).

4.3 LAND USE CLASSIFICATION

A land use classification is the result of the process of converting raw satellite images into a map with meaningful classes. The basis for the discrimination between different classes is that land cover types often differ in reflective behaviour. However, there always some overlap between classes. If for example, the crop has no full ground cover the resulting spectral behaviour is also dependent of the soil, the specific reflectance which can be attributed to the vegetation is more difficult to extract. In addition, during certain periods of the crop development, the spectral reflectance can be similar for different crops.

In case crops have the same spectral reflectance at a certain time they are indistinguishable. If on an earlier or later date the spectral behaviour is different it is possible to differentiate between the two by using another satellite image. This type of multi-temporal classifications generally yields higher accuracies. (Pelgrum. et al, 2009).

Field work is necessary to compliment the image classification. By sampling a large number of fields with different crops at different dates it is possible to use this a priori information to enhance the land use classification. Also at a later stage these part or all of the field data can be used to assess the quality of the land use classification.

Figure 14 some air photo for the study area in wadi Zabeed

4.4 FIELD WORK

Shortly after the acquisitions of the Landsat images a field visit will organize to each area. Based on the information and patterns on the image, suitable areas will select. In general 10 to 30 sites will select for each image to visit. At each site several fields, ranging from 10 to 150, will identified on the images and the crop type noted. During the subsequent visits 64 sites will visit in wadi's Zabeed, and Rima. Figure 15 below gives an example of the sites to will be visit in Zabeed during the field campaign infuture 2011. During the first field work campaigns it became clear that a typical growing season does not exist

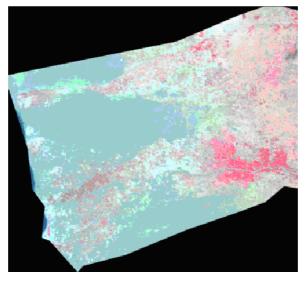


Figure 15 gives an example of the sites to will be visit in Zabeed and Rima during the field work

4.5 CLASSIFICATION PROCEDURES

The first approach to the discrimination of different classes is through the visual inspection of the satellite images. In Figure 18 the same image is displayed as RGB:3,2,1 and RGB:3,4,2 (RGB is the combination of bands represented by Red, Green and Blue). The first one is very useful for the visual differentiation between the vegetated and non vegetated areas. The second one is the most useful combination for the visual discrimination between crops. The classification is independent of the display combinations.

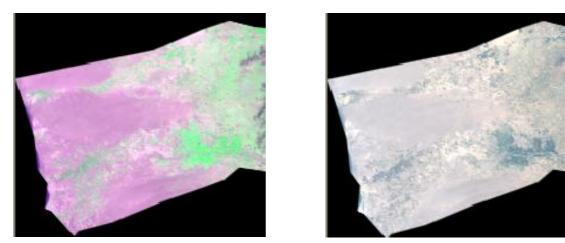


Figure 18 the same image is displayed as RGB:3,2,1 and RGB:3,4,2 (RGB is the combination of bands)

5. WADI ZABEED AND WADI RIMA (water management RESULT) General

This chapter gives an overview of the result of different types of satellite imagery used. Also a listing of the acquisition dates of the imagery is given. One of the requests in the tender document leading to this report was to provide a level of detail of 30 m multispectral bands. In the discussions leading towards the project inception, all parties agreed that the crop water use analysis would be done based on a 30 m resolution Landsat7 ETM+, DEM 30m & 250m images, MODIS Images 250 m and TRMM 0.25 degree images (=250m) dataset.

5.1 PRECIPITATION

Precipitation is derived from the Tropical Rainfall Measuring Mission (TRMM) sensor1. The product used in this study is the calibrated monthly rainfall (43b4) which is available worldwide in a 0.25-degree by 0.25-degree spatial resolution. Figure 19, 20, 22 depicts average daily , monthly and annualy rainfall for a large area in Yemen's plains covering all irrigation schemes investigated. Rainfall is absent or marginal during January to April and in November/December. The rains start in May/June, but the majority of the annual rain is measured in July (120 mm) and August (118 mm). Total annual rainfall is 363 mm for the entire area, but differs significantly between the irrigation schemes (see also **Figure 23**). Annual rainfall in Zabeed areas. is as high as 492, while average annual rainfall in Zabeed Extension is only 238 mm.

Figure 19. Daily calibrated precipitation from the TRMM sensor /4/2010 (in mm per day).

Figure 20. Average monthly precipitation in 2010 measured by the TRMM sensor (in mm per month).

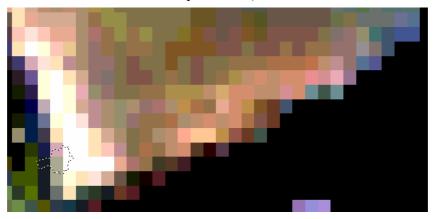


Figure 21. Monthly calibrated precipitation from the TRMM sensor (in mm per month).

Rainfall (mm/yr)				
Land use class	Р	Р		
	mm/year	mcm/year		
Uncroped	510	133.9821		
Rainfed	390	80.640846		
Irrigation area	480	182.72779		
Single Season Crops	335	60.347637		
Double Season Crops	480	112.39128		
Perennial Crops	340	39.488688		

 Table 8. Annual average rainfall for six major Land use class (in millimeter per year).

 Painfall (mm/un)

1 For more information on the TRMM sensor, visit http://trmm.gsfc.nasa.gov/

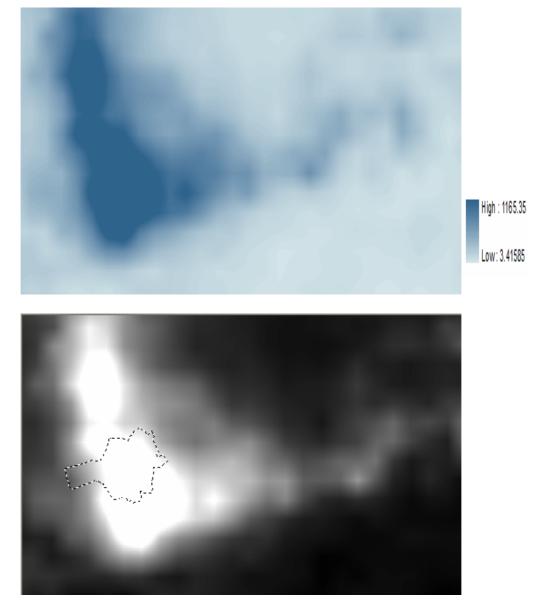


Figure 22. Annual calibrated precipitation from the TRMM sensor (in mm per year).

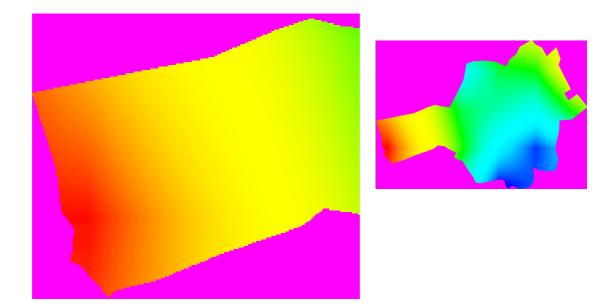


Figure 23. Annual calibrated precipitation for Wadi Zabeed &Rema areas using the TRMM sensor (in mm per year) Range is 3 to 1060 mm/yr

5.2 ACTUAL EVAPOTRANSPIRATION

The actual evapotranspiration has been calculated using the M-SEBAL algorithm which converts the satellite measured spectral radiances into surface energy balances including evapotranspiration. The algorithm is collect independent and uses satellite data with a thermal infrared sensor. In this study MODIS satellite images and Landsat7 ETM images were used. Meteorological data were the additional inputs besides the remote sensing data. Meteorological data were obtained from the NWRA gage stations. The output from the M-SEBAL analysis consists of 12 maps of total monthly actual evapotranspiration. The maps have a resolution of 250*250 m and actual evapotranspiration is expressed in millimeter per month. Since the 250*250 m area related to irrigated fields and other land use classes, evapotranspiration is an equivalent layer that applies to a mixed land use. The gross actual evapotranspiration in Million cubic meters (MCM) was derived by multiplying the monthly average equivalent evapotranspiration (in millimeter) with the gross irrigated area. The results are presented in the figures 24 and table 9 below.

Average actual evapotranspiration for gross irrigated areas in Zabeed areas is between 452 mm and 2107 mm/year. It must be emphasized here that these layer-wise evapotranspiration results are averages from MODIS pixels that are flagged as irrigated land. Real crop evapotranspiration from irrigated land will be higher as the average values from MODIS pixels include non-irrigated land.

Monthly evapotranspiration values are high in July/September for all study area, but strongly decrease in the winter and spring period. The Zabeed area depict high monthly evapotranspiration rates throughout the year and peak values between 80 and 100 mm/month can be found in July/September. In the non irrigation area monthly evapotranspiration is between 10 to 30 mm/month from January to July (see Figure 24)

Finally, the evapotranspiration as result from irrigation (ETirr) is calculated by determining annual evapotranspiration from a rainfed non-irrigated area adjacent to the irrigation scheme (ETrain) and deducting this amount from the gross evapotranspiration (ETgross). Depending on the surrounding land use/vegetation and the amount of precipitation, the amount of water evapotranspiring from non-irrigated land differs. Figure 25 the ET using Landsat ETM images shows that ET from non-irrigated land ranges between 167 and 252 mm/year and that the effective rainfall factor (defined as the evapotranspiration from non-irrigated land divided by the gross precipitation) is higher (± 0.9) at lower rainfall rates than at higher rainfall rates (0.5).

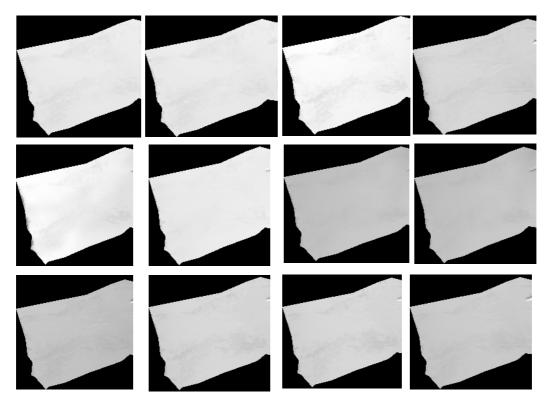


Figure 24. Monthly gross actual evapotranspiration in 12 months 2010 for the study areas Wdi Zabeed and Rema, using M-SEBAL model and MODIS images.

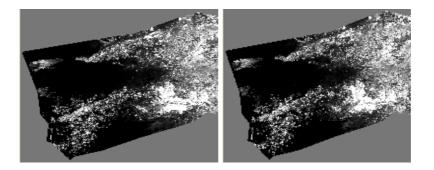


Figure 25. Monthly actual evapotranspiration calculated by M-SEBAL model and Landsat ETM images at July/October 2010

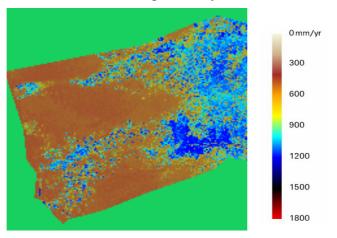
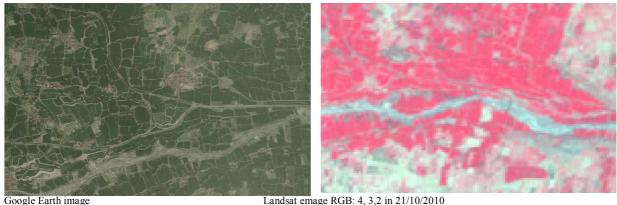


Figure 26. Annual actual evapotranspiration in 2010 for the study ara using M-SEBAL Range from 0 to 1890 mm/yr


Table 9. Monthly gross actual evapotranspiration (in mm/year) in 2010 for the Zabeed areas,
averaged for the gross irrigated area.

Land use class	ET	ET	ET	ET
	mm/day	mcm/day	mm/year	mcm/year
Uncroped	2	0.52542	73	19.177
Rainfed	3.5	0.7237	651	134.608
Irrigation area	11	4.187	967	368.120
Single Season Crops	6	1.080	706	127.180
Double Season Crops	10	2.341	1117	261.543
Perennial Crops	9	1.045	1087	126.247

5.3 LAND USE

Spate irrigation is a type of water management unique to semi-arid environments. Flood water from mountain catchments is diverted from Wadi's and spread over large areas. Spate irrigation is very risk prone, due to the unpredictability of the wadi floods and frequent changes in the course of the wadi from which the water is diverted. Due to uncertainty of floods, the amount of water available for irrigation can differ greatly from year to year.

Groundwater irrigation uses a more reliable source of water: groundwater. With pumps the groundwater can be pumped to the surface, where it can be used to irrigate the agricultural fields. It can be used on demand and there is no reliance on weather or flood events. The major issue with groundwater irrigation is the necessity to use the groundwater in a sustainably way. Overexploitation of groundwater can lead to a number of negative consequences, like increasing soil salinity, water quality detoriation, depletion of available water resources. This can lead to serious socio-economical problems. Drinking water for the domestic sector could for instance be at threat. Fields in Wadi Zabeed that are cropped in April, October and December are irrigated by means of groundwater because spates only occur during the rainy and flood season.

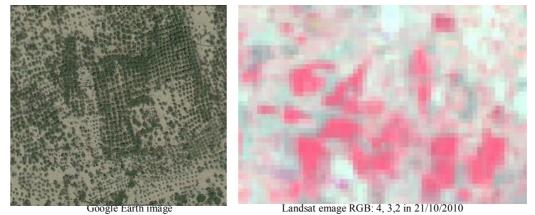

Landsat emage RGB: 4, 3,2 in 21/10/2010 Figure 27: Example of spate irrigation in upper Wadi Zabeed

Figure 27 shows an example of spate irrigation from the upper Wadi Zabeed. The blue track is the course of the Wadi. The dark fields are freshly ploughed or harrowed fields with a higher soil moisture content. some fields are very dark indicating an irrigation application with residual tailwater ponding at the lower end of the field.the October image most fields show a healthy crop although within the fields there is a large difference between the upper and lower part of the fields. While most fields are harvested on the December.

Landsat emage RGB: 4, 3,2 in 21/10/2010

Figure 28: Example of rainfed agriculture and groundwater irrigation in the plain Groundwater irrigation is practised on the plain between the two Wadi's. These fields are visible as the bright red fields on October image of Figure 28. The image the area appears reddish indicating a rainfed crop with partial vegetation cover.

Figure 29: Example of groundwater irrigation in Wadi Zabeed

Because of the inability to discern different crop types, agricultural land use classes have been classified instead of individual crops. The land use classification divided the land use with regard to the management practices. The classes defined are:

Uncropped (including water bodies, cities and plain areas)

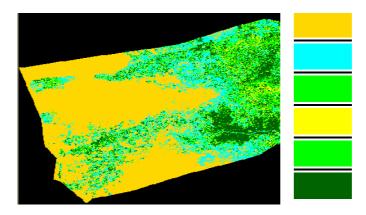
Rainfed Agriculture

Single Season Crops

Double Season Crops

Perennial Crops

The land use classification cannot distinguish spate and groundwater irrigation in the Wadi Zabeed area. It is quite certain however that perennial crops and double season crops must be irrigated by groundwater outside the flood season. When spate irrigation is applied is


something which cannot be inferred from satellite imagery.Table 10 shows the area covered by the different agricultural land use in the Zabeed area.

Land use class	Area (ha)	% of total	% of cropped area
		area	
Uncroped	26271	0.1902871	0.235006
Rainfed	20677.14	0.1497694	0.184966
Irrigation area	38068.29	0.2757376	0.340538
Single Season Crops	18014.22	0.1304813	0.161145
Double Season Crops	23414.85	0.1695993	0.209456
Perennial Crops	11614.32	0.0841253	0.103895

Table10: Agricultural Land Use in the Zabeed area. The total area agrees with the area of the Landsat 7 image depicted.

Table 10 contains the total irrigated area expressed as single season crops, double season crops and perennial crops. Approximately half of all cropped area is rainfed agriculture and the other half is irrigated agriculture. The distinction between rainfed and irrigated agriculture has been made using the amount of rainfall in 2010 as mapped by the TRMM satellite. If the actual evapotranspiration from a cropped field was less than the yearly rainfall than that field was identified as rainfed agriculture. By using the TRMM rainfall map the spatial variability of the rainfall was taken into account.

The two Landsat ETM images have been used to calculate the Normalized Difference Vegetation Index (NDVI). Pixels with a high NDVI have a large amount of fresh green vegetation. Pixels with a low NDVI have sparse vegetation being either crops or natural vegetation. By comparing the four NDVI images at different dates it was possible to discern fields with a constant high NDVI (perennial crops), fields with a single peak in the NDVI (single season crops) and fields with two peaks in different times of the year (double season crops). The amount of area for both perennial crops (2%) and double season crops (1%) is limited for Zabeed. The majority of the irrigation activities (ca 80%) is applied only for one growing season, and is thus essentially a spate irrigation system.

Figure 30: classification result in Wadies Zabeed and Rema colour composite is shown.

Figure 30 shows the detail as land use classifications show season crops. Spate irrigation is limited to a single crop per year. The lower parts of the fields receive most of the water. The upper part of the field is usually classified as rainfed agriculture, which actually is a good reflection of the reality.

Fieldwork must be taken in Zabeed at four different times in different seasons. Because of the shift in classification from specific crops to agricultural land data to perform an assessment on the accuracy of the classification. The most straightforward assessment is whether the distinction between cropped area and uncropped area is sufficient. The field data the fieldwork will also mapping as crop area. This provides an accuracy of 97% for mapping cropped area.

5.4 WATER USE

The actual and potential evapotranspiration (ET) have been calculated using the M-SEBAL algorithm. Actual ET represent crop water consumption and potential ET crop water demand. Annual ET is obtained from the 12 MODIS satellite images Figure 24. The available Landsat data have been used to downscale the results to a resolution of 30 m. For a map of actual ET for the whole Zabeed area Figure 32, for a map of potential ET for the whole Zabeed area see figure 33. From the ET maps it can be seen that there is a clear decreasing trend in ET from the mountains towards the Red Sea Coast. The two Wadi's can be clearly identified with high ET values due to the heat from the surrounding desert in combination with wet irrigated soils. Also the natural vegetation in the mountains have a high evapotranspiration, mainly caused by rainfall in the mountains originating from storms in the Red Sea. The runoff of these mountains is used to harvest water in the plains for spate irrigation in the Wadi's. The Wadi's display a large amount of variability of actual ET. This is due to the different management practices. Fields with groundwater irrigation can use water throughout the whole year, whereas the spate irrigation fields have limited access to water. The rainfed agriculture is only able to use approximately 470 mm per year, which is the average rainfall for the Zabeed region.

Figure 32 and 33 shows the actual and potential ET of an area with rainfed agriculture and groundwater irrigation. The irrigated fields consume considerably more water than the rainfed agriculture, which are corresponding high ET values. The area in Figure 34 These fields must be irrigated with groundwater.

Figure35 shows the actual and potential ET of an area with spate irrigation. All fields with spate irrigation have a heterogeneous distribution of ET values. The lower lying areas in the field receive more water than the higher lying areas. This can be seen at the triangular shapes on the ET image. This phenomenon is related to the geographical nature of these fields. In general the ET values of fields with spate irrigation are lower than with groundwater irrigation. Also the fields show a less homogeneous distribution of water.

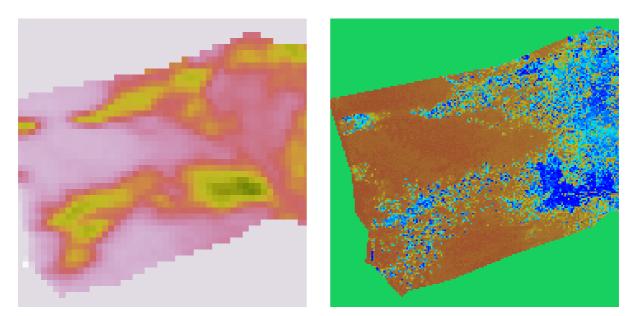


Figure 32 for Actual ET for the Zabeed area&Fig 33 the potential ET for the whole Zabeed area

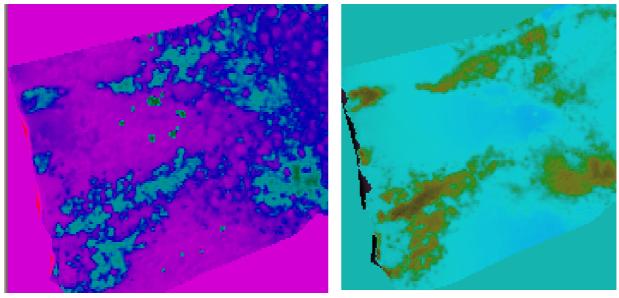


Figure 34 fields must be irrigated with groundwater.

In Table 12 the mean potential and actual ET values for the different agricultural land use classes are summarized. Also the standard deviation is given for the different classes.

Table 12: Potential and Actual annual ET values for all agricultural land use classes in th	ıe
Zaheed area	

Lubeeu ureu.					
Land use class	Actual evapotranspiration		Potential evapotranspiration		
	mm/yr	mm/yr mcm/yr r		mcm/yr	
Uncroped	73	19.17783	2089	548.8012	
Rainfed	651	134.6081814	1922	397.4146	
Irrigation area	967	368.1203643	1870	711.877	
Single Season Crops	706	127.1803932	2055	370.1922	

Double Season Crops	1117	261.5438745	1952	457.0579
Perennial Crops	1087	126.2476584	1932	224.3887

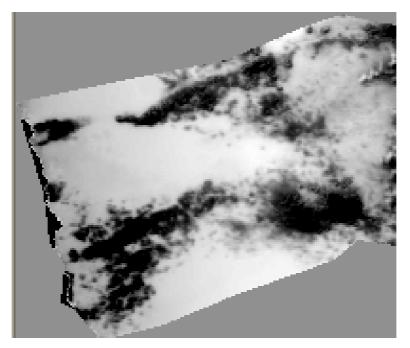
Table 13 gives an estimate how much irrigation water has been applied. The assumption has been made that an irrigation efficiency of 55% holds. This means that 55% of applied water is consumed by the plants (in addition to ET originating from rainfall). The remainder of the irrigation water applied goes either to surface runoff, drainage or groundwater recharge and is not available for the plant. The ET from the rainfed crops is taken as the ET which is due to rainfall. The following definitions are used in Table 13:

 Table 13
 Irrigation supply for agricultural land use classes in wadis Zabeed and Rimaa areas

Land use	Area	Actual ET	Potential ET	Net Irrigatio supply		Gross Irrigation supply	
	Не	mm/yr	mm/yr	mm/yr	mcm/yr	mm/yr	Mcm/yr
Cross basin area							
Uncropped	26271	73	2089	0			
Rainfed	20677.14	651	1922	0			
Irrigated areas	38068.29	967	1870	903			
Single season Crop	18014.22	706	2055				
Double Season Crop	23414.85	1117	1952				
Perennial Crop	11614.32	1087	1932				

The total ET of an irrigated crop:

ETactual = ETrain + ETirrigated. ETrain = ET of Rainfed Agriculture Net Irrigation Supply = ETirrigated Gross Irrigation Supply = Net Irrigation Supply / Efficiency

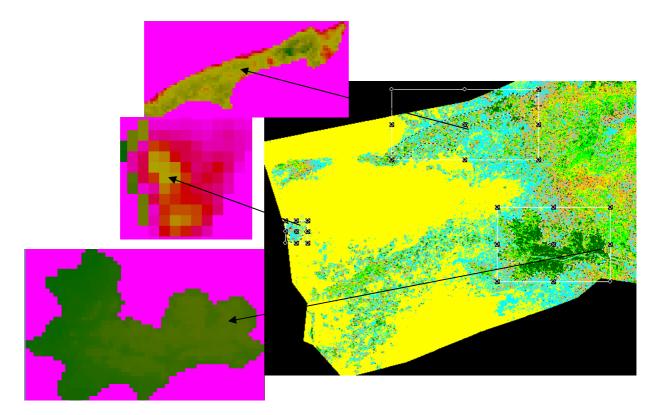

From Table 13 it can be seen that although the Single Season crops apply less irrigation water per unit of land the total volumetric amount of irrigation water applied is with,.... mcm/yr....

5.5 WATER BALANCE

Monthly precipitation and actual evapotranspiration are depicted for the study area in **Figure 35**. Only during July and October there is sufficient precipitation to meet the crop's water demand. In the other months, irrigation water is required.

Table 14 show the yearly water availability by precipitation and water diversion.

Land use class	P-ET	P-ET
	MM/YR	MCM/YR
Cross basin area	-1955.02	-546.801
Uncropped	-1841.36	-393.915
Rainfed	-1687.27	-700.877
Irrigated areas	-1994.65	-364.192
Single season Crop	-1839.61	-447.058
Double Season Crop	-1892.51	-215.389
Perennial Crop	-1955.02	-546.801


Figurev35 show the yearly water availability by precipitation and water diversion

In figure 35. $P-\rm ET$. Including surface water diversions, groundwater abstractions range from -1450 to +633 mm/yr

Even though agricultural activities are absent during May-July, considerable amounts of water are diverted if the numbers are correct. Also during the winter and spring season, the amounts of water diversion exceed ETgross by up to 4.6 times the ETgross. In August

sufficient water is available to agriculture due to the rainfall, but in the following months the water supply is much lower than the demand. (It must be noted that groundwater pumping for irrigation is not included as a potential water source.) Similar trends are also depicted in **Figure 36** where the monthly gross irrigation demands (ETirr divided by an irrigation water supply efficiency of 55%) are related to the water diversions from official statistics. The oversupply in the winter/summer period and the shortage during September to October indicates that irrigation water supply does not match with the demand at all.

Because the water balance in the wide areas show mines result and the runoff and the flood irrigated areas is centralizes in the mean valley so we have select three areas to study the water balance every pixel, this thee study areas as showing in the figures 36 bellow it is wadi Zabeed irrigated areas and Almujilees areas and wadi Rimaa irrigated areas, the tables 15 to 24 is showing the actual ET, potential or reference ET, Precipitation and water balance in every selected site.

Figurev35 show the thee study areas as case studies

Tables show the actual and reference evapotranspirations in wadi Zabeed

WadiZabee d refernce

	-	-				
			WadiZabee			
			d actual et			
el	No.		Area	histogra	actual	No.
L	pixel		Hectar	m	ET valu	pixel
0			7500	1200	0	
					5.79535	
2256	1		0	0	6	1
					11.5907	
8451	2		0	0	1	2
7077	0			0	17.3860	
7677	3		0	0	7	3
6902	4		0	0	23.1814 3	4
0902	4		0	0	28.9767	4
6128	5		0	0	20.9707	5
0120	0			v	34.7721	0
5353	6		0	0	4	6
					40.5674	
4579	7		0	0	9	7
					46.3628	
3804	8		0	0	5	8
					52.1582	
8303	9		0	0	1	9
0050	10			0	57.9535	10
2256	10		0	0	6	10
1481	11		0	0	63.7489	11
1401			0	0	2 69.5442	
0707	12		0	0	8	12
0101			U		75.3396	
1993	13		0	0	3	13
					81.1349	
2916	14		0	0	9	14
					86.9303	
3838	15		0	0	4	15
4761	16		0	0	92.7257	16
			-		98.5210	
5683	17		0	0	6	17
	10			0	104.316	10
6606	18		0	0	4	18
7529	19		0	0	110.111 8	19
1529	19		0	0	115.907	19
8451	20		0	0	113.307	20
0401	20			v	121.702	20
9374	21		0	0	5	21
					127.497	
0296	22		0	0	8	22
					133.293	
1219	23		0	0	2	23
			_	-	139.088	
2141	24		0	0	6	24
2064	25			0	144.883	25

150.679

d refernce et			
Area	histogra	rferencel ET valu	No.
Hectar 7500	m 1200	⊑ i vaiu 0	pixel
0	0	8.092256	1
0	0	16.18451	2
0	0	24.27677	3
0	0	32.36902	4
0	0	40.46128	5
0	0	48.55353	6
0	0	56.64579	7
0	0	64.73804	8
0	0	72.8303	9
0	0	80.92256	10
0	0	89.01481	11
0	0	97.10707	12
0	0	105.1993	13
0	0	113.2916	14
0	0	121.3838	15
0	0	129.4761	16
0	0	137.5683	17
0	0	145.6606	18
0	0	153.7529	19
0	0	161.8451	20
0	0	169.9374	21
0	0	178.0296	22
0	0	186.1219	23
0	0	194.2141	24
0	0	202.3064	25
0	0	210.3986	26

		156.474	
0	0	6	27
0	0	162.27	28
	0	168.065	20
0	0	172.000	29
0	0	173.860 7	30
0	0	179.656	31
0	0	185.451	51
0	0	4	32
		191.246	02
0	0	8	33
		197.042	
0	0	1	34
		202.837	
0	0	5	35
		208.632	
6.25	1	8	36
0.05		214.428	07
6.25	1	2	37
6.25	1	220.223	20
0.25	1	5 226.018	38
0	0	220.010	39
		231.814	00
0	0	3	40
		237.609	
6.25	1	6	41
0	0	243.405	42
		249.200	
0	0	3	43
		254.995	
0	0	7	44
0	0	260.791	45
0.05		266.586	10
6.25	1	4	46
0	0	272.381 7	47
0	0	278.177	47
6.25	1	270.177	48
0.20		283.972	-10
12.5	2	5	49
		289.767	
6.25	1	8	50
		295.563	
12.5	2	2	51
		301.358	
6.25	1	5	52
_	_	307.153	50
0	0	9 312.949	53
6.25	1	312.949	54
0.20	1	318.744	54
6.25	1	6	55
12.5	2	324.54	56
.2.0		330.335	
12.5	2	3	57
12.5	2	336.130	58
ī	•		

1	I	l	1
0	0	218.4909	27
0	0	226.5832	28
0	0	234.6754	29
0	0	242.7677	30
0	0	250.8599	31
0	0	258.9522	32
0	0	267.0444	33
0	0	275.1367	34
0	0	283.2289	35
0	0	291.3212	36
0	0	299.4135	37
0	0	307.5057	38
0	0	315.598	39
0	0	323.6902	40
0	0	331.7825	41
0	0	339.8747	42
0	0	347.967	43
0	0	356.0592	44
0	0	364.1515	45
0	0	372.2438	46
0	0	380.336	47
0	0	388.4283	48
0	0	396.5205	49
0	0	404.6128	50
0	0	412.705	51
0	0	420.7973	52
0	0	428.8895	53
0	0	436.9818	54
0	0	445.0741	55
0	0	453.1663	56
0	0	461.2586	57
0	0	469.3508	58

I	1	7	
18.75	3	341.926	59
18.75	3	347.721 4	60
18.75	3	353.516 7	61
		359.312	
12.5	2	1 365.107	62
18.75	3	4 370.902	63
0	0	8	64
6.25	1	376.698 2	65
18.75	3	382.493 5	66
18.75	3	388.288 9	67
		394.084	
18.75	3	2 399.879	68
37.5	6	6 405.674	69
25	4	411.470	70
18.75	3	3	71
25	4	417.265 7	72
12.5	2	423.061	73
18.75	3	428.856 4	74
18.75	3	434.651 7	75
31.25	5	440.447 1	76
		446.242	
31.25	5	4 452.037	77
31.25	5	8 457.833	78
31.25	5	463.628	79
18.75	3	5	80
37.5	6	469.423 9	81
25	4	475.219 2	82
		481.014	
25	4	6 486.809	83
50	8	9 492.605	84
25	4	3 498.400	85
25	4	6	86
37.5	6	504.196 509.991	87
18.75	3	4	88

0	0	477.4431	59
0	0	485.5353	60
0	0	493.6276	61
0	0	501.7198	62
0	0	509.8121	63
0	0	517.9044	64
0	0	525.9966	65
0	0	534.0889	66
0	0	542.1811	67
0	0	550.2734	68
0	0	558.3656	69
0	0	566.4579	70
0	0	574.5501	71
0	0	582.6424	72
0	0	590.7347	73
0	0	598.8269	74
0	0	606.9192	75
0	0	615.0114	76
0	0	623.1037	77
0	0	631.1959	78
0	0	639.2882	79
0	0	647.3804	80
0	0	655.4727	81
0	0	663.565	82
0	0	671.6572	83
0	0	679.7495	84
0	0	687.8417	85
0	0	695.934	86
0	0	704.0262	87
0	0	712.1185	88

1 1		E 4 E 300	
43.75	7	515.786 7	89
		521.582	
37.5	6	<u>1</u> 527.377	90
56.25	9	527.577 4	91
		533.172	
68.75	11	<u>8</u> 538.968	92
31.25	5	1	93
07.5	0	544.763	0.1
37.5	6	550.558	94
18.75	3	8	95
56.05	0	556.354	06
56.25	9	<u>2</u> 562.149	96
18.75	3	6	97
21.25	5	567.944	00
31.25	5	<u>9</u> 573.740	98
18.75	3	3	99
75	12	579.535	100
75 43.75	7	<u>6</u> 585.331	100
10.10		591.126	
68.75	11	3	102
18.75	3	596.921 7	103
		602.717	
31.25	5	<u>1</u> 608.512	104
37.5	6	608.512 4	105
		614.307	
25	4	<u>8</u> 620.103	106
37.5	6	020.103	107
		625.898	
18.75	3	5 631.693	108
25	4	8	109
=0		637.489	
50	8	<u>2</u> 643.284	110
18.75	3	5	111
05		649.079	110
25	4	<u>9</u> 654.875	112
31.25	5	3	113
40.75	0	660.670	444
18.75 31.25	<u>3</u> 5	6 666.466	114 115
01.20	5	672.261	110
31.25	5	3	116
18.75	3	678.056 7	117
25	4	683.852	118
	_	689.647	
31.25	5	4	119

1		l	I
0	0	720.2107	89
0	0	728.303	90
0	0	736.3953	91
0	0	744.4875	92
0	0	752.5798	93
0	0	760.672	94
0	0	768.7643	95
0	0	776.8565	96
0	0	784.9488	97
0	0	793.041	98
0	0	801.1333	99
0	0	809.2256	100
0	0	817.3178	101
0	0	825.4101	102
0	0	833.5023	103
0	0	841.5946	104
0	0	849.6868	105
0	0	857.7791	106
0	0	865.8713	107
0	0	873.9636	108
0	0	882.0559	109
0	0	890.1481	110
0	0	898.2404	111
0	0	906.3326	112
0	0	914.4249	113
0	0	922.5171	114
0	0	930.6094	115
0	0	938.7016	116
0	0	946.7939	117
0	0	954.8862	118
0	0	962.9784	119

1			1 1
56.25	9	695.442 8	120
-		701.238	
31.25	5	<u>1</u> 707.033	121
50	8	707.033	122
		712.828	
50	8	8	123
25	4	718.624 2	124
25	7	724.419	124
68.75	11	5	125
24.25	F	730.214	100
31.25	5	9 736.010	126
31.25	5	2	127
		741.805	
37.5	6	6	128
31.25	5	747.601	129
37.5	6	753.396 3	130
0.10	Ĵ	759.191	
62.5	10	7	131
37.5	6	764.987	132
31.25	5	770.782	133
51.25	5	776.577	155
43.75	7	7	134
		782.373	
62.5	10	1	135
50	8	788.168 5	136
		793.963	100
31.25	5	8	137
25	4	799.759	100
25	4	<u>2</u> 805.554	138
37.5	6	5	139
		811.349	
50	8	9	140
50	8	817.145 2	141
	0	822.940	141
43.75	7	6	142
50.05	~	828.735	
56.25	9	<u>9</u> 834.531	143
100	16	3	144
		840.326	
68.75	11	7	145
62.5	10	846.122	146
43.75	7	851.917 4	147
10.70	,	857.712	
75	12	7	148
E0.05	_	863.508	140
56.25	9	1 869.303	149
56.25	9	4 009.303	150
	5	•	

1	I	l	I
0	0	971.0707	120
0	0	979.1629	121
0	0	987.2552	122
0	0	995.3474	123
0	0	1003.44	124
0	0	1011.532	125
0	0	1019.624	126
0	0	1027.716	127
0	0	1035.809	128
0	0	1043.901	129
0	0	1051.993	130
0	0	1060.085	131
0	0	1068.178	132
0	0	1076.27	133
0	0	1084.362	134
0	0	1092.455	135
0	0	1100.547	136
0	0	1108.639	137
0	0	1116.731	138
0	0	1124.824	139
0	0	1132.916	140
0	0	1141.008	141
0	0	1149.1	142
0	0	1157.193	143
0	0	1165.285	144
0	0	1173.377	145
0	0	1181.469	146
0	0	1189.562	147
0	0	1197.654	148
0	0	1205.746	149
0	0	1213.838	150

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	1	975 009	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.75	11	875.098 8	151
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	8		152
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	16		153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.75	11	9	154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 25	9		155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			904.075	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	81.25	13	-	156
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	4	Ţ	157
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	81.25	13	-	158
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.75	7		150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			933.052	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.5	0		101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.75	11	7	162
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.75	11	944.643 1	163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	12		164
$\begin{array}{c ccccccc} & 962.029 & \\ & & 967.824 & \\ \hline 75 & 12 & 5 & 167 \\ \hline 973.619 & \\ & 973.619 & \\ & 979.415 & \\ \hline 62.5 & 10 & 2 & 169 \\ \hline 68.75 & 11 & 6 & 170 \\ \hline 68.75 & 11 & 6 & 170 \\ \hline 31.25 & 5 & 9 & 171 \\ \hline 43.75 & 7 & 3 & 172 \\ \hline 75 & 12 & 7 & 173 \\ \hline 87.5 & 14 & 2 & 174 \\ \hline 56.25 & 9 & 7 & 175 \\ \hline 31.25 & 5 & 3 & 176 \\ \hline 31.25 & 5 & 3 & 176 \\ \hline 75 & 12 & 8 & 177 \\ \hline 75 & 12 & 8 & 177 \\ \hline \end{array}$	75	12		104
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.5	6	-	165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.75	7	1	166
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	12	-	167
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87.5	14	÷	168
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.5	10	2	169
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.75	11	-	170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		
$\begin{array}{c cccccc} & & & & 1002.59 \\ \hline 75 & 12 & 7 & 173 \\ & & & 1008.39 \\ \hline 87.5 & 14 & 2 & 174 \\ \hline 56.25 & 9 & 7 & 175 \\ \hline 31.25 & 5 & 3 & 176 \\ \hline 75 & 12 & 8 & 177 \\ \hline 75 & 12 & 8 & 177 \\ \hline \end{array}$	31.25	5		171
$\begin{array}{c cccccc} 75 & 12 & 7 & 173 \\ & & & 1008.39 \\ \hline 87.5 & 14 & 2 & 174 \\ \hline 56.25 & 9 & 7 & 175 \\ \hline 31.25 & 5 & 3 & 176 \\ \hline 75 & 12 & 8 & 177 \\ \hline 1031.57 & \hline \end{array}$	43.75	7	3	172
87.5 14 2 174 1014.18 1014.18 175 56.25 9 7 175 31.25 5 3 176 75 12 8 177 1031.57 1031.57 1031.57	75	12	-	173
56.25 9 1014.18 175 31.25 5 3 176 75 12 8 177 1031.57 1031.57 1031.57	Q7 5	1/		17/
31.25 5 3 176 75 12 8 177 1031.57 1031.57 1031.57			-	
31.25 5 3 176 1025.77 1025.77 1025.77 75 12 8 177 1031.57 1031.57 1031.57 1031.57	56.25	9	7 1019 98	175
75 12 8 177 1031.57 1031.57 1031.57	31.25	5	3	176
1031.57	75	12		177
1 6761 101 91 170				
1037.36	62.5	10	3 1037.36	178
43.75 7 9 179				
81.25 13 1043.16 81.25 13 4 180	43.75	7	9	179

0	0	1221.931	151
0	0	1230.023	152
0	0	1238.115	153
0	0	1246.207	154
0	0	1254.3	155
0	0	1262.392	156
0	0	1270.484	157
0	0	1278.576	158
0	0	1286.669	159
0	0	1294.761	160
0	0	1302.853	161
0	0	1310.945	162
0	0	1319.038	163
0	0	1327.13	164
0	0	1335.222	165
0	0	1343.314	166
0	0	1351.407	167
0	0	1359.499	168
0	0	1367.591	169
0	0	1375.683	170
0	0	1383.776	171
0	0	1391.868	172
0	0	1399.96	173
0	0	1408.052	174
0	0	1416.145	175
0	0	1424.237	176
0	0	1432.329	177
0	0	1440.421	178
0	0	1448.514	179
0	0	1456.606	180
U	`		

1 1		1040 05	
56.25	9	1048.95 9	181
		1054.75	
62.5	10	5	182
43.75	7	1060.55	183
04.05	10	1066.34	104
81.25	13	<u> </u>	184
68.75	11	1072.14	185
		1077.93	
18.75	3	6	186
50.05		1083.73	407
56.25	9	<u>2</u> 1089.52	187
75	12	1069.52	188
	.2	1095.32	100
56.25	9	2	189
		1101.11	
87.5	14	8	190
56.25	9	1106.91	191
50.25	9	<u>3</u> 1112.70	191
75	12	8	192
		1118.50	
87.5	14	4	193
00.75	4.4	1124.29	101
68.75	11	<u>9</u> 1130.09	194
87.5	14	4	195
56.25	9	1135.89	196
		1141.68	
43.75	7	5	197
40.75	7	1147.48	100
43.75	7	1153.27	198
43.75	7	6	199
		1159.07	
37.5	6	1	200
40	_	1164.86	00.4
43.75	7	7 1170.66	201
50	8	2	202
		1176.45	202
37.5	6	7	203
		1182.25	
37.5	6	3	204
18.75	3	1188.04 8	205
10.73	3	<u>ہ</u> 1193.84	200
43.75	7	3	206
		1199.63	
12.5	2	9	207
40.75	~	1205.43	000
18.75	3	4 1211.22	208
31.25	5	1211.22 9	209
01.20		1217.02	200
25	4	5	210
6.25	1	1222.82	211

1	1	1	I
0	0	1464.698	181
0	0	1472.791	182
0	0	1480.883	183
0	0	1488.975	184
0	0	1497.067	185
0	0	1505.16	186
0	0	1513.252	187
0	0	1521.344	188
0	0	1529.436	189
0	0	1537.529	190
0	0	1545.621	191
0	0	1553.713	192
0	0	1561.805	193
0	0	1569.898	194
0	0	1577.99	195
0	0	1586.082	196
0	0	1594.174	197
0	0	1602.267	198
0	0	1610.359	199
0	0	1618.451	200
0	0	1626.543	201
0	0	1634.636	202
0	0	1642.728	203
0	0	1650.82	204
0	0	1658.912	205
0	0	1667.005	206
0	0	1675.097	207
0	0	1683.189	208
0	0	1691.281	209
0	0	1699.374	210
0	0	1707.466	211

1	Т	I	4000.04	I
2	:5	4	1228.61 6	212
	_	_	1234.41	
2	25	4	1 1240.20	213
2	.5	4	6	214
24.0	5	F	1246.00	215
31.2	.5	5	2 1251.79	215
31.2	:5	5	7	216
18.7	5	3	1257.59 2	217
			1263.38	
18.7	'5	3	8 1269.18	218
12.	5	2	3	219
10	~	0	1274.97	000
12.	.5	2	8 1280.77	220
12.	5	2	4	221
18.7	5	3	1286.56 9	222
10.7			1292.36	
18.7		3	4	223
18.7	5	3	1298.16 1303.95	224
12.	5	2	5	225
18.7	5	3	1309.75 1	226
10.7	5	5	1315.54	220
18.7	'5	3	6 1321.34	227
18.7	5	3	1321.34	228
		_	1327.13	
43.7	5	7	7 1332.93	229
12.	5	2	2	230
2	.5	4	1338.72	231
2	.0	4	1344.52	231
18.7	'5	3	3	232
2	5	4	1350.31 8	233
			1356.11	
6.2	25	1	3 1361.90	234
12.	5	2	9	235
31.2		5	1367.70 4	236
51.2	.0	5	1373.49	230
43.7	'5	7	9	237
31.2	5	5	1379.29 5	238
18.7		3	1385.09	239
	5		1390.88	240
2	:5	4	6 1396.68	240
12.		2	1	241
	0	0	1402.47	242

1		l	1
0	0	1715.558	212
0	0	1723.65	213
0	0	1731.743	214
0	0	1739.835	215
0	0	1747.927	216
0	0	1756.019	217
0	0	1764.112	218
0	0	1772.204	219
0	0	1780.296	220
0	0	1788.388	221
0	0	1796.481	222
0	0	1804.573	223
0	0	1812.665	224
0	0	1820.758	225
0	0	1828.85	226
0	0	1836.942	227
0	0	1845.034	228
0	0	1853.127	229
0	0	1861.219	230
0	0	1869.311	231
0	0	1877.403	232
62.5	10	1885.496	233
362.5	58	1893.588	234
493.75	79	1901.68	235
443.75	71	1909.772	236
337.5	54	1917.865	237
168.75	27	1925.957	238
350	56	1934.049	239
468.75	75	1942.141	240
493.75	79	1950.234	241
306.25	49	1958.326	242

250	40	1966.418	243
175	28	1974.51	244
93.75	15	1982.603	245
256.25	41	1990.695	246
256.25	41	1998.787	247
387.5	62	2006.879	248
331.25	53	2014.972	249
400	64	2023.064	250
581.25	93	2031.156	251
481.25	77	2039.248	252
531.25	85	2047.341	253
262.5	42	2055.433	254
6.25	1	2063.525	255

		6	
		1408.27	
12.5	2	2	243
		1414.06	
12.5	2	7	244
		1419.86	
6.25	1	2	245
		1425.65	
0	0	8	246
		1431.45	
6.25	1	3	247
		1437.24	
0	0	8	248
		1443.04	
18.75	3	4	249
		1448.83	
6.25	1	9	250
		1454.63	
0	0	4	251
0	0	1460.43	252
		1466.22	
0	0	5	253
6.25	1	1472.02	254
		1477.81	
6.25	1	6	255

Table showing the precipitations and the surface water balance without the runoff of the valley in wadi Zabee Areas surface

surface water					
balance		WadiZabeed			
(SWB)		presepitation			
		Anna Llastan		rainfall p	No.
	P - ETa	Area Hectar 7500	histogram 1200	valu 0	pixel
		7500	1200	0	
	3.67494	0	0	2.120414	1
	7.34989	0	0	4.240827	2
	- 11.0248	0	0	6.361241	3
	- 14.6998	0	0	8.481654	4
	- 18.3747	0	0	10.60207	5
	- 22.0497	0	0	12.72248	6
	- 25.7246	0	0	14.84289	7
	- 29.3995	0	0	16.96331	8
	- 33.0745	0	0	19.08372	9
	- 36.7494	0	0	21.20414	10
	- 40.4244	0	0	23.32455	11
	- 44.0993	0	0	25.44496	12
	- 47.7743	0	0	27.56538	13
	- 51.4492	0	0	29.68579	14
	- 55.1241	0	0	31.8062	15
	- 58.7991	0	0	33.92662	16
	-62.474	0	0	36.04703	17
	-66.149	0	0	38.16744	18
	- 69.8239	0	0	40.28786	19
	- 73.4989	0	0	42.40827	20
	- 77.1738	0	0	44.52868	21
	- 80.8487	0	0	46.6491	22
	- 84.5237	0	0	48.76951	23
	- 88.1986	0	0	50.88993	24
	- 91.8736	0	0	53.01034	25
	-	0	0	55.13075	26

95.5485				
- 99.2235	0	0	57.25117	27
- 102.898	0	0	59.37158	28
- 106.573	0	0	61.49199	29
- 110.248	0	0	63.61241	30
- 113.923	0	0	65.73282	31
- 117.598	0	0	67.85323	32
- 121.273	0	0	69.97365	33
- 124.948	0	0	72.09406	34
- 128.623	0	0	74.21447	35
- 132.298	0	0	76.33489	36
- 135.973	0	0	78.4553	37
- 139.648	0	0	80.57571	38
- 143.323	0	0	82.69613	39
- 146.998	0	0	84.81654	40
- 150.673	0	0	86.93696	41
- 154.348	0	0	89.05737	42
- 158.023	0	0	91.17778	43
- 161.697	0	0	93.2982	44
- 165.372	0	0	95.41861	45
- 169.047	0	0	97.53902	46
- 172.722	0	0	99.65944	47
- 176.397	0	0	101.7799	48
- 180.072	0	0	103.9003	49
- 183.747	0	0	106.0207	50
- 187.422	0	0	108.1411	51
- 191.097	0	0	110.2615	52
- 194.772	0	0	112.3819	53
- 198.447	0	0	114.5023	54
- 202.122	0	0	116.6227	55

99.2235
- 102.898
- 106.573
- 110.248
- 113.923
- 117.598
- 121.273
- 124.948
- 128.623
- 132.298
- 135.973
- 139.648
- 143.323
- 146.998
- 150.673
- 154.348
- 158.023
- 161.697
- 165.372
- 169.047
- 172.722
- 176.397
- 180.072
- 183.747
- 187.422
- 191.097
- 194.772
- 198.447

	1			1
205.797	0	0	118.7432	56
209.472	0	0	120.8636	57
- 213.147	0	0	122.984	58
- 216.822	0	0	125.1044	59
- 220.497	0	0	127.2248	60
- 224.172	0	0	129.3452	61
- 227.846	0	0	131.4656	62
- 231.521	0	0	133.5861	63
- 235.196	0	0	135.7065	64
- 238.871	0	0	137.8269	65
- 242.546	0	0	139.9473	66
- 246.221	0	0	142.0677	67
- 249.896	0	0	144.1881	68
- 253.571	0	0	146.3085	69
- 257.246	0	0	148.4289	70
- 260.921	0	0	150.5494	71
- 264.596	0	0	152.6698	72
- 268.271	0	0	154.7902	73
- 271.946	0	0	156.9106	74
- 275.621	0	0	159.031	75
- 279.296	0	0	161.1514	76
- 282.971	0	0	163.2718	77
- 286.646	0	0	165.3923	78
-290.32	0	0	167.5127	79
293.995	0	0	169.6331	80
-297.67	0	0	171.7535	81
- 301.345	0	0	173.8739	82
-305.02	0	0	175.9943	83
- 308.695	0	0	178.1147	84
-312.37	0	0	180.2352	85
- 316.045	0	0	182.3556	86

-319.72	0	0	184.476	87
- 323.395	0	0	186.5964	88
-327.07	0	0	188.7168	89
- 330.745	0	0	190.8372	90
-334.42	0	0	192.9576	91
- 338.095	0	0	195.078	92
-341.77	0	0	197.1985	93
345.445	0	0	199.3189	94
-349.12	0	0	201.4393	95
352.795	0	0	203.5597	96
- 356.469	0	0	205.6801	97
- 360.144	0	0	207.8005	98
- 363.819	0	0	209.9209	99
- 367.494	0	0	212.0414	100
- 371.169	0	0	214.1618	101
- 374.844	0	0	216.2822	102
- 378.519	0	0	218.4026	103
- 382.194	0	0	220.523	104
- 385.869	0	0	222.6434	105
- 389.544	0	0	224.7638	106
- 393.219	0	0	226.8842	107
- 396.894	0	0	229.0047	108
400.569	0	0	231.1251	109
404.244	0	0	233.2455	110
407.919	0	0	235.3659	111
- 411.594	0	0	237.4863	112
- 415.269	0	0	239.6067	113
- 418.943	0	0	241.7271	114
- 422.618	0	0	243.8476	115
426.293	0	0	245.968	116
- 429.968	0	0	248.0884	117
-	0	0	250.2088	118

433.643				
- 437.318	0	0	252.3292	119
- 440.993	0	0	254.4496	120
- 444.668	0	0	256.57	121
- 448.343	0	0	258.6905	122
- 452.018	0	0	260.8109	123
- 455.693	0	0	262.9313	124
- 459.368	0	0	265.0517	125
- 463.043	0	0	267.1721	126
- 466.718	0	0	269.2925	127
470.393	0	0	271.4129	128
474.068	0	0	273.5333	129
477.743	0	0	275.6538	130
- 481.417	0	0	277.7742	131
485.092	0	0	279.8946	132
- 488.767	0	0	282.015	133
- 492.442	0	0	284.1354	134
496.117	0	0	286.2558	135
499.792	0	0	288.3762	136
503.467	0	0	290.4967	137
507.142	0	0	292.6171	138
510.817	0	0	294.7375	139
514.492	0	0	296.8579	140
518.167	0	0	298.9783	141
521.842	0	0	301.0987	142
- 525.517	0	0	303.2191	143
- 529.192	0	0	305.3396	144
- 532.867	0	0	307.46	145
536.542	0	0	309.5804	146
- 540.217	0	0	311.7008	147

I.	I	l		I
543.892	0	0	313.8212	148
547.566	0	0	315.9416	149
- 551.241	0	0	318.062	150
- 554.916	0	0	320.1824	151
- 558.591	0	0	322.3029	152
- 562.266	0	0	324.4233	153
- 565.941	0	0	326.5437	154
- 569.616	0	0	328.6641	155
- 573.291	0	0	330.7845	156
- 576.966	0	0	332.9049	157
- 580.641	0	0	335.0253	158
- 584.316	0	0	337.1458	159
- 587.991	0	0	339.2662	160
- 591.666	0	0	341.3866	161
- 595.341	0	0	343.507	162
- 599.016	0	0	345.6274	163
602.691	0	0	347.7478	164
606.366	0	0	349.8682	165
-610.04	0	0	351.9886	166
- 613.715	0	0	354.1091	167
-617.39	0	0	356.2295	168
- 621.065	0	0	358.3499	169
-624.74	0	0	360.4703	170
-	0	0	262 5007	474
628.415 -632.09	0	0	362.5907 364.7111	171 172
-	0	0	JJ7.7111	112
635.765	0	0	366.8315	173
-639.44	0	0	368.952	174
643.115	0	0	371.0724	175
-646.79	0	0	373.1928	176
-		0	075 0400	477
650.465 -654.14	0	0	375.3132 377.4336	177 178
-		0	0.1.7000	170
657.815	0	0	379.554	179
-661.49	0	0	381.6744	180

	I	I		I
665.165	0	0	383.7949	181
-668.84	0	0	385.9153	182
672.515	0	0	388.0357	183
- 676.189	0	0	390.1561	184
- 679.864	0	0	392.2765	185
683.539	0	0	394.3969	186
687.214	0	0	396.5173	187
690.889	0	0	398.6377	188
- 694.564	0	0	400.7582	189
- 698.239	0	0	402.8786	190
701.914	0	0	404.999	191
705.589	0	0	407.1194	192
709.264	0	0	409.2398	193
712.939	0	0	411.3602	194
716.614	0	0	413.4806	195
720.289	0	0	415.6011	196
723.964	6.25	1	417.7215	197
727.639	25	4	419.8419	198
731.314	31.25	5	421.9623	199
734.989	50	8	424.0827	200
738.663	75	12	426.2031	201
742.338	100	16	428.3235	202
746.013	125	20	430.4439	203
749.688	137.5	22	432.5644	204
- 753.363	143.75	23	434.6848	205
- 757.038	156.25	25	436.8052	206
- 760.713	175	28	438.9256	207
- 764.388	212.5	34	441.046	208
768.063	206.25	33	443.1664	209
771.738	212.5	34	445.2868	210

	1 1		1	1
775.413	212.5	34	447.4073	211
779.088	212.5	34	449.5277	212
- 782.763	193.75	31	451.6481	213
- 786.438	200	32	453.7685	214
- 790.113	206.25	33	455.8889	215
- 793.788	206.25	33	458.0093	216
- 797.463	212.5	34	460.1297	217
- 801.138	212.5	34	462.2502	218
- 804.812	243.75	39	464.3706	219
- 808.487	231.25	37	466.491	220
- 812.162	218.75	35	468.6114	221
- 815.837	193.75	31	470.7318	222
- 819.512	150	24	472.8522	223
- 823.187	137.5	22	474.9726	224
- 826.862	106.25	17	477.093	225
- 830.537	93.75	15	479.2135	226
- 834.212	87.5	14	481.3339	227
- 837.887	93.75	15	483.4543	228
- 841.562	75	12	485.5747	229
- 845.237	68.75	11	487.6951	230
- 848.912	81.25	13	489.8155	231
- 852.587	87.5	14	491.9359	232
- 856.262	93.75	15	494.0564	233
- 859.937	100	16	496.1768	234
- 863.612	106.25	17	498.2972	235
- 867.286	118.75	19	500.4176	236
- 870.961	112.5	18	502.538	237
- 874.636	106.25	17	504.6584	238
- 878.311	112.5	18	506.7788	239
-	118.75	19	508.8993	240

881.986				
- 885.661	112.5	18	511.0197	241
- 889.336	118.75	19	513.1401	242
- 893.011	106.25	17	515.2605	243
- 896.686	112.5	18	517.3809	244
- 900.361	106.25	17	519.5013	245
- 904.036	100	16	521.6217	246
- 907.711	106.25	17	523.7421	247
- 911.386	93.75	15	525.8626	248
- 915.061	100	16	527.983	249
- 918.736	106.25	17	530.1034	250
- 922.411	100	16	532.2238	251
- 926.086	100	16	534.3442	252
- 929.761	81.25	13	536.4646	253
933.435	62.5	10	538.585	254
-937.11	43.75	7	540.7055	255

		refernce et		actual et			
Area			No.			actual ET	No.
Hectar	histogram	rferencel ET valu	pixel	Area Hectar	histogram	valu	pixel
325	52	0		325	52	0	
0	0	8.310074806	1	0	0	9.001037598	1
0	0	16.62014961	2	0	0	18.0020752	2
0	0	24.93022442	3	0	0	27.00311279	3
0	0	33.24029922	4	0	0	36.00415039	4
0	0	41.55037403	5	0	0	45.00518799	5
0	0	49.86044884	6	0	0	54.00622559	6
0	0	58.17052364	7	0	0	63.00726318	7
0	0	66.48059845	8	6.25	1	72.00830078	8
0	0	74.79067326	9	0	0	81.00933838	9
0	0	83.10074806	10	0	0	90.01037598	10
0	0	91.41082287	11	0	0	99.01141357	11
0	0	99.72089767	12	0	0	108.0124512	12
0	0	108.0309725	13	0	0	117.0134888	13
0	0	116.3410473	14	0	0	126.0145264	14
0	0	124.6511221	15	0	0	135.015564	15
0	0	132.9611969	16	0	0	144.0166016	16
0	0	141.2712717	17	12.5	2	153.0176392	17
0	0	149.5813465	18	6.25	1	162.0186768	18
0	0	157.8914213	19	0	0	171.0197144	19
0	0	166.2014961	20	0	0	180.020752	20
0	0	174.5115709	21	0	0	189.0217896	21
0	0	182.8216457	22	0	0	198.0228271	22
0	0	191.1317205	23	25	4	207.0238647	23
0	0	199.4417953	24	0	0	216.0249023	24
0	0	207.7518702	25	0	0	225.0259399	25
0	0	216.061945	26	18.75	3	234.0269775	26
0	0	224.3720198	27	0	0	243.0280151	27
0	0	232.6820946	28	12.5	2	252.0290527	28
0	0	240.9921694	29	12.5	2	261.0300903	29
0	0	249.3022442	30	25	4	270.0311279	30
0	0	257.612319	31	6.25	1	279.0321655	31
0	0	265.9223938	32	6.25	1	288.0332031	32
0	0	274.2324686	33	12.5	2	297.0342407	33
0	0	282.5425434	34	0	0	306.0352783	34
0	0	290.8526182	35	12.5	2	315.0363159	35
0	0	299.162693	36	0	0	324.0373535	36
0	0	307.4727678	37	0	0	333.0383911	37
0	0	315.7828426	38	6.25	1	342.0394287	38
0	0	324.0929174	39	6.25	1	351.0404663	39
0	0	332.4029922	40	0	0	360.0415039	40
0	0	340.7130671	41	12.5	2	369.0425415	41
0	0	349.0231419	42	12.5	2	378.0435791	42
0	0	357.3332167	43	12.5	2	387.0446167	43
0	0	365.6432915	44	6.25	1	396.0456543	44
0	0	373.9533663	45	6.25	1	405.0466919	45
0	0	382.2634411	46	6.25	1	414.0477295	46
0	0	390.5735159	47	12.5	2	423.0487671	47

Tables show the actual and reference Evapotranspirations in Almujilees Area

0	0	398.8835907	48	6.25	1	432.0498047	48
0	0	407.1936655	49	25	4	441.0508423	49
0	0	415.5037403	49 50	0		450.0518799	49 50
0	0	423.8138151	50	0	0	459.0529175	51
0	0	432.1238899	52	6.25	1	468.0539551	52
0	0	440.4339647	53	12.5	2	477.0549927	53
0	0	448.7440395	54 55	0	0	486.0560303	54
0	0	457.0541143	55	0	0	495.0570679	55
0	0	465.3641891	56	0	0	504.0581055	56
0	0	473.674264	57	6.25	1	513.0591431	57
0	0	481.9843388	58	6.25	1	522.0601807	58
0	0	490.2944136	59	6.25	1	531.0612183	59
0	0	498.6044884	60	12.5	2	540.0622559	60
0	0	506.9145632	61	6.25	1	549.0632935	61
0	0	515.224638	62	0	0	558.0643311	62
0	0	523.5347128	63	12.5	2	567.0653687	63
0	0	531.8447876	64	6.25	1	576.0664063	64
0	0	540.1548624	65	6.25	1	585.0674438	65
0	0	548.4649372	66	0	0	594.0684814	66
0	0	556.775012	67	6.25	1	603.069519	67
0	0	565.0850868	68	6.25	1	612.0705566	68
0	0	573.3951616	69	6.25	1	621.0715942	69
0	0	581.7052364	70	18.75	3	630.0726318	70
0	0	590.0153112	71	0	0	639.0736694	71
0	0	598.325386	72	25	4	648.074707	72
0	0	606.6354609	73	12.5	2	657.0757446	73
0	0	614.9455357	74	12.5	2	666.0767822	74
0	0	623.2556105	75	0	0	675.0778198	75
0	0	631.5656853	76	12.5	2	684.0788574	76
0	0	639.8757601	77	0	0	693.079895	77
0	0	648.1858349	78	0	0	702.0809326	78
0	0	656.4959097	79	0	0	711.0819702	79
0	0	664.8059845	80	6.25	1	720.0830078	80
0	0	673.1160593	81	0	0	729.0840454	81
0	0	681.4261341	82	6.25	1	738.085083	82
0	0	689.7362089	83	6.25	1	747.0861206	83
0	0	698.0462837	84	18.75	3	756.0871582	84
0	0	706.3563585	85	6.25	1	765.0881958	85
0	0	714.6664333	86	12.5	2	774.0892334	86
0	0	722.9765081	87	0	0	783.090271	87
0	0	731.2865829	88	0	0	792.0913086	88
0	0	739.5966578	89	6.25	1	801.0923462	89
0	0	747.9067326	90	6.25	1	810.0933838	90
0	0	756.2168074	91	12.5	2	819.0944214	91
0	0	764.5268822	92	0	0	828.095459	92
0	0	772.836957	93	0	0	837.0964966	93
0	0	781.1470318	94	12.5	2	846.0975342	94
0	0	789.4571066	95	12.5	2	855.0985718	95
0	0	797.7671814	96	6.25	1	864.0996094	96
0	0	806.0772562	90 97	12.5	2	873.100647	90
0	0	814.387331	97 98	12.5	2	882.1016846	97
0	0						
U	U	822.6974058	99	0	0	891.1027222	99

0	0	831.0074806	100	12.5	2	900.1037598	100
0	0	839.3175554	100	0	0	909.1047974	100
0	0	847.6276302	101	0	0	918.105835	101
0	0	855.937705	102	0	0	927.1068726	102
0	0	864.2477798	103	0	0	936.1079102	103
0	0	872.5578547	104	0	0	945.1089478	104
					-		
0	0	880.8679295	106	0	0	954.1099854	106
0	0	889.1780043	107	0	0	963.1110229	107
0	0	897.4880791	108	0	0	972.1120605	108
0	0	905.7981539	109	0	0	981.1130981	109
0	0	914.1082287	110	6.25	1	990.1141357	110
0	0	922.4183035	111	6.25	1	999.1151733	111
0	0	930.7283783	112	0	0	1008.116211	112
0	0	939.0384531	113	0	0	1017.117249	113
0	0	947.3485279	114	6.25	1	1026.118286	114
0	0	955.6586027	115	6.25	1	1035.119324	115
0	0	963.9686775	116	0	0	1044.120361	116
0	0	972.2787523	117	0	0	1053.121399	117
0	0	980.5888271	118	0	0	1062.122437	118
0	0	988.8989019	119	6.25	1	1071.123474	119
0	0	997.2089767	120	0	0	1080.124512	120
0	0	1005.519052	121	0	0	1089.125549	121
0	0	1013.829126	122	0	0	1098.126587	122
0	0	1022.139201	123	0	0	1107.127625	123
0	0	1030.449276	124	6.25	1	1116.128662	124
0	0	1038.759351	125	0	0	1125.1297	125
0	0	1047.069426	126	0	0	1134.130737	126
0	0	1055.3795	127	6.25	1	1143.131775	127
0	0	1063.689575	128	0	0	1152.132813	128
0	0	1071.99965	129	0	0	1161.13385	129
0	0	1080.309725	130	0	0	1170.134888	130
0	0	1088.6198	131	6.25	1	1179.135925	131
0	0	1096.929874	132	0	0	1188.136963	132
0	0	1105.239949	133	0	0	1197.138	133
0	0	1113.550024	134	0	0	1206.139038	134
0	0	1121.860099	135	0	0	1215.140076	135
0	0	1130.170174	136	6.25	1	1224.141113	136
0	0	1138.480248	137	0.20	0	1233.142151	137
0	0	1146.790323	137	6.25	1	1242.143188	137
0	0	1155.100398	130	0.25	0	1251.144226	130
0	0	1163.410473	139	0	0	1260.145264	139
0	0	1171.720548	140	0	0	1269.146301	140
0	0	1180.030622	141	0	0	1278.147339	141
0	0	1188.340697	142	0	0	1287.148376	142
0	0	1196.650772	143	0	0	1296.149414	143
0	0	1204.960847	144	0	0	1305.150452	144
0	0		145	0			145
		1213.270922			0	1314.151489	
0	0	1221.580997	147	0	0	1323.152527	147
0	0	1229.891071	148	0	0	1332.153564	148
0	0	1238.201146	149	0	0	1341.154602	149
0	0	1246.511221	150	0	0	1350.15564	150
0	0	1254.821296	151	0	0	1359.156677	151

0	0	1263.131371	152	0	0	1368.157715	152
0	0	1271.441445	152	0	0	1377.158752	152
0	0	1279.75152	153	0	0	1386.15979	153
0	0	1288.061595	155	0	0	1395.160828	154
0	0		155	0	0	1404.161865	
0	0	1296.37167	156	0	0		156 157
		1304.681745			-	1413.162903	
0	0	1312.991819	158	0	0	1422.16394	158
0	0	1321.301894	159	0	0	1431.164978	159
0	0	1329.611969	160	0	0	1440.166016	160
0	0	1337.922044	161	0	0	1449.167053	161
0	0	1346.232119	162	0	0	1458.168091	162
0	0	1354.542193	163	0	0	1467.169128	163
0	0	1362.852268	164	0	0	1476.170166	164
0	0	1371.162343	165	0	0	1485.171204	165
0	0	1379.472418	166	0	0	1494.172241	166
0	0	1387.782493	167	0	0	1503.173279	167
0	0	1396.092567	168	0	0	1512.174316	168
0	0	1404.402642	169	0	0	1521.175354	169
0	0	1412.712717	170	0	0	1530.176392	170
0	0	1421.022792	171	0	0	1539.177429	171
0	0	1429.332867	172	0	0	1548.178467	172
0	0	1437.642941	173	0	0	1557.179504	173
0	0	1445.953016	174	0	0	1566.180542	174
0	0	1454.263091	175	0	0	1575.18158	175
0	0	1462.573166	176	0	0	1584.182617	176
0	0	1470.883241	177	0	0	1593.183655	177
0	0	1479.193316	178	0	0	1602.184692	178
0	0	1487.50339	179	0	0	1611.18573	179
0	0	1495.813465	180	0	0	1620.186768	180
0	0	1504.12354	181	0	0	1629.187805	181
0	0	1512.433615	182	0	0	1638.188843	182
0	0	1520.74369	183	0	0	1647.18988	183
0	0	1529.053764	184	0	0	1656.190918	184
0	0	1537.363839	185	0	0	1665.191956	185
0	0	1545.673914	186	0	0	1674.192993	186
0	0	1553.983989	187	0	0	1683.194031	187
0	0	1562.294064	188	0	0	1692.195068	188
0	0	1570.604138	189	0	0	1701.196106	189
0	0	1578.914213	190	0	0	1710.197144	190
0	0	1587.224288	191	0	0	1719.198181	191
0	0	1595.534363	192	0	0	1728.199219	192
0	0	1603.844438	192	0	0	1737.200256	192
0	0	1612.154512	193	0	0	1746.201294	193
0	0	1620.464587	194	0	0	1755.202332	194
0	0	1628.774662	195	0	0	1764.203369	195
0	0	1637.084737	190 197	0	0	1773.204407	190
0	0	1645.394812	197	6.25	1	1782.205444	197
	0						
0	0	1653.704886	199 200	6.25	1	1791.206482	199
		1662.014961	200	0	0	1800.20752	200
0	0	1670.325036	201	0	0	1809.208557	201
0	0	1678.635111	202	0	0	1818.209595	202
0	0	1686.945186	203	0	0	1827.210632	203

l ol	0	1695.25526	204	0	0	1836.21167	204
0	0	1703.565335	205	0	0	1845.212708	205
0	0	1711.87541	206	0	0	1854.213745	200
0	0	1720.185485	200	0	0	1863.214783	200
0	0	1728.49556	207	0	0	1872.21582	207
0	0	1736.805634	208	0	0	1881.216858	208
0					0		209
	0	1745.115709	210	0	-	1890.217896	
0	0	1753.425784	211	0	0	1899.218933	211
0	0	1761.735859	212	0	0	1908.219971	212
0	0	1770.045934	213	0	0	1917.221008	213
0	0	1778.356009	214	0	0	1926.222046	214
0	0	1786.666083	215	0	0	1935.223083	215
0	0	1794.976158	216	0	0	1944.224121	216
0	0	1803.286233	217	0	0	1953.225159	217
0	0	1811.596308	218	6.25	1	1962.226196	218
0	0	1819.906383	219	18.75	3	1971.227234	219
0	0	1828.216457	220	6.25	1	1980.228271	220
0	0	1836.526532	221	0	0	1989.229309	221
0	0	1844.836607	222	0	0	1998.230347	222
0	0	1853.146682	223	0	0	2007.231384	223
0	0	1861.456757	224	0	0	2016.232422	224
0	0	1869.766831	225	0	0	2025.233459	225
0	0	1878.076906	226	0	0	2034.234497	226
0	0	1886.386981	227	0	0	2043.235535	227
0	0	1894.697056	228	0	0	2052.236572	228
0	0	1903.007131	229	0	0	2061.23761	229
0	0	1911.317205	230	0	0	2070.238647	230
0	0	1919.62728	231	0	0	2079.239685	231
0	0	1927.937355	232	0	0	2088.240723	232
0	0	1936.24743	233	0	0	2097.24176	233
0	0	1944.557505	234	0	0	2106.242798	234
0	0	1952.867579	235	6.25	1	2115.243835	235
0	0	1961.177654	236	0	0	2124.244873	236
0	0	1969.487729	237	0	0	2133.245911	237
0	0	1977.797804	238	0	0	2142.246948	238
0	0	1986.107879	239	6.25	1	2151.247986	239
6.25	1	1994.417953	240	0.20	0	2160.249023	240
25	4	2002.728028	241	0	0	2169.250061	241
6.25	1	2011.038103	242	0	0	2178.251099	242
31.25	5	2019.348178	243	0	0	2187.252136	242
31.25	5	2027.658253	243	0	0	2196.253174	243
12.5	2	2035.968328	245	0	0	2205.254211	245
18.75	3	2033.908328	245	0	0	2214.255249	245
				0	-	2214.255249	
25 31.25	4	2052.588477	247	0	0		247 248
	5 10	2060.898552	248 249	0	0	2232.257324	
62.5		2069.208627			0	2241.258362	249
62.5	10	2077.518702	250	0	0	2250.259399	250
125	20	2085.828776	251	0	0	2259.260437	251
112.5	18	2094.138851	252	0	0	2268.261475	252
93.75	15	2102.448926	253	0	0	2277.262512	253
56.25	9	2110.759001	254	6.25	1	2286.26355	254
31.25	5	2119.069076	255	6.25	1	2295.264587	255

Table showing the precipitations and the surface water balance in Almujilees Area

surface water
balance

(SWB) almujilees presepitation

P - ETa	Area Hectar	histogram	rainfall p valu	No. pixel
	325	52	0	
-7.94389	0	0	1.057151	1
-15.8878	0	0	2.114301	2
-23.8317	0	0	3.171452	
-31.7755	0	0	4.228602	
-39.7194		0		
-47.6633	0	0		
-55.6072	0	0	7.400054	
-63.5511	0	0	8.457205	
-71.495	0	0	9.514355	
-79.4389	0	0	10.57151	10
-87.3828	0	0		
-95.3266	0	0	12.68581	12
-103.271	0	0	13.74296	
-111.214	0	0	14.80011	13
-119.158	-	0	15.85726	15
-127.102		0		
-135.046	0	0		
-142.99	0	0	19.02871	17
-150.934	_	0		
-158.878	0	0	21.14301	20
-166.822	0	0		20
-174.766	0	0		
	-	0	24.31446	
-182.709	0	-		
-190.653	0	0	25.37161	24
-198.597	0	0	26.42877	25
-206.541	0	0	27.48592	
-214.485	0	0		
-222.429	0	0		
-230.373	0	0		29
-238.317	0	0		
-246.26	0	0		
-254.204	0	0		
-262.148	0	0		
-270.092	0	0	35.94312	
-278.036	0	0	37.00027	
-285.98	0	0	38.05742	36
-293.924	0	0	39.11457	37
-301.868	0	0	40.17172	
-309.812	0	0	41.22887	39
-317.755	0	0	42.28602	
-325.699	0	0	43.34317	
-333.643	0	0	44.40033	42
-341.587	0	0	45.45748	
-349.531	0	0	46.51463	
-357.475	0	0	47.57178	
-365.419	0	0	48.62893	
-373.363	0	0	49.68608	47

r				
-381.307	0	0	50.74323	48
-389.25	0	0	51.80038	49
-397.194	0	0	52.85753	50
-405.138	0	0	53.91468	51
-413.082	0	0	54.97183	52
-421.026	0	0	56.02898	53
-428.97	0	0	57.08613	54
-436.914	0	0	58.14328	55
-444.858	0	0	59.20043	56
-452.802	0	0	60.25758	57
-460.745	0	0	61.31473	58
-468.689	0	0	62.37189	59
-476.633	0	0	63.42904	60
-484.577	0	0	64.48619	61
-492.521	0	0	65.54334	62
-500.465	0	0	66.60049	63
-508.409	0	0	67.65764	64
		-		
-516.353	0	0	68.71479	65
-524.297	0	0	69.77194	66
-532.24	0	0	70.82909	67
-540.184	0	0	71.88624	68
-548.128	0	0	72.94339	69
-556.072	0	0	74.00054	70
-564.016	0	0	75.05769	71
-571.96	0	0	76.11484	72
-579.904	0	0	77.17199	73
-587.848	0	0	78.22914	74
-595.792	0	0	79.2863	75
-603.735	0	0	80.34345	76
-611.679	0	0	81.4006	77
-619.623	0	0	82.45775	78
-627.567	0	0	83.5149	79
-635.511	0	0	84.57205	80
-643.455	0	0	85.6292	81
-651.399	0	0	86.68635	82
-659.343	0	0	87.7435	83
-667.287	0	0	88.80065	84
-675.23	0	0	89.8578	85
-683.174	0	0	90.91495	86
	0			87
-691.118		0	91.9721	
-699.062	0	0	93.02925	88
-707.006	0	0	94.0864	89
-714.95	0	0	95.14355	90
-722.894	0	0	96.2007	91
-730.838	0	0	97.25786	92
-738.781	0	0	98.31501	93
-746.725	0	0	99.37216	94
-754.669	0	0	100.4293	95
-762.613	0	0	101.4865	96
-770.557	0	0	102.5436	97
-778.501	0	0	103.6008	98
-786.445	0	0	104.6579	99
-794.389	0	0	105.7151	100
L	1			

-802.333	0	0	106.7722	101
-810.276	0	0	107.8294	102
-818.22	0	0	108.8865	103
-826.164	0	0	109.9437	104
-834.108	0	0	111.0008	105
-842.052	0	0	112.058	106
-849.996	0	0	113.1151	107
-857.94	0	0	114.1723	108
-865.884	0	0	115.2294	109
-873.828	0	0	116.2866	110
-881.771	0	0	117.3437	111
-889.715	0	0	118.4009	112
-897.659	0	0	119.458	113
-905.603	0	0	120.5152	114
-913.547	0	0	121.5723	115
-921.491	0	0	122.6295	116
-929.435	0	0	123.6866	117
-937.379	0	0	124.7438	118
-945.323	0	0	125.8009	119
-953.266	0	0	126.8581	110
-961.21	0	0	127.9152	120
-969.154	0	0	128.9724	121
-977.098	0	0	130.0295	122
-985.042	0	0	131.0867	123
-985.042			132.1438	124
	0	0		
-1000.93	0	0	133.201	126
-1008.87	0	0	134.2581	127
-1016.82	0	0	135.3153	128
-1024.76	0	0	136.3724	129
-1032.71	0	0	137.4296	130
-1040.65	0	0	138.4867	131
-1048.59	0	0	139.5439	132
-1056.54	0	0	140.601	133
-1064.48	0	0		134
-1072.42	0	0	142.7153	135
-1080.37	0	0	143.7725	136
-1088.31	0	0	144.8296	137
-1096.26	0	0	145.8868	138
-1104.2	0	0	146.9439	139
-1112.14	0	0	148.0011	140
-1120.09	0	0	149.0582	141
-1128.03	0	0	150.1154	142
-1135.98	0	0	151.1725	143
-1143.92	0	0	152.2297	144
-1151.86	0	0	153.2868	145
-1159.81	0	0	154.344	146
-1167.75	0	0	155.4011	147
-1175.7	0	0	156.4583	148
-1183.64	0	0	157.5154	149
-1191.58	0	0	158.5726	150
-1199.53	0	0	159.6297	151
-1207.47	0	0	160.6869	152
-1215.41	0	0	161.744	153
L	-			-

-1223.36	0	0	162.8012	154
-1231.3	0	0	163.8583	155
-1239.25	0	0	164.9155	156
-1247.19	0	0	165.9726	157
-1255.13	0	0	167.0298	158
-1263.08	0	0	168.0869	159
-1271.02	0	0	169.1441	160
-1278.97	0	0	170.2012	161
-1286.91	0	0	171.2584	162
-1294.85	0	0	172.3155	163
-1302.8	0	0	173.3727	164
-1310.74	0	0	174.4298	165
-1318.69	0	0	175.487	166
-1326.63	0	0	176.5442	167
-1334.57	0	0	177.6013	168
-1342.52	0	0	178.6585	169
-1350.46	0	0	179.7156	100
-1358.4	0	0	180.7728	170
-1366.35	0	0	180.7728	171
-1300.35	0	0	182.8871	172
		-		
-1382.24	0	0	183.9442	174
-1390.18	0	0	185.0014	175
-1398.12	0	0	186.0585	176
-1406.07	0	0	187.1157	177
-1414.01	0	0	188.1728	178
-1421.96	0	0	189.23	179
-1429.9	0	0	190.2871	180
-1437.84	0	0	191.3443	181
-1445.79	0	0	192.4014	182
-1453.73	0	0	193.4586	183
-1461.68	0	0	194.5157	184
-1469.62	0	0	195.5729	185
-1477.56	0	0	196.63	186
-1485.51	0	0	197.6872	187
-1493.45	0	0	198.7443	188
-1501.39	0	0	199.8015	189
-1509.34	0	0	200.8586	190
-1517.28	0	0	201.9158	191
-1525.23	0	0	202.9729	192
-1533.17	0	0	204.0301	193
-1541.11	0	0	205.0872	194
-1549.06	0	0	206.1444	195
-1557	0	0	207.2015	196
-1564.95	0	0	208.2587	197
-1572.89	0	0	209.3158	198
-1580.83	0	0	210.373	199
-1588.78	0	0	211.4301	200
-1596.72	0	0	211.4301	200
-1604.67	0	0	212.4673	201
-1612.61	0	-	213.5444	202
	-	0		
-1620.55	0	0	215.6587	204
-1628.5	0	0	216.7159	205
-1636.44	0	0	217.773	206

-1644.38	0	0	218.8302	207
-1652.33	0	0	219.8873	208
-1660.27	0	0	220.9445	209
-1668.22	0	0	222.0016	210
-1676.16	0	0	223.0588	211
-1684.1	0	0	224.1159	212
-1692.05	0	0	225.1731	213
-1699.99	0	0	226.2302	214
-1707.94	0	0	227.2874	215
-1715.88	0	0	228.3445	216
-1723.82	0	0	229.4017	217
-1731.77	0	0	230.4588	218
-1739.71	0	0	231.516	219
-1747.66	0	0	232.5731	220
-1755.6	0	0	233.6303	221
-1763.54	0	0	234.6874	222
-1771.49	0	0	235.7446	223
-1779.43	0	0	236.8017	224
-1787.37	0	0	237.8589	225
-1795.32	0	0	238.916	226
-1803.26	0	0	239.9732	227
-1811.21	0	0	241.0303	228
-1819.15	0	0	242.0875	229
-1827.09	0	0	243.1446	230
-1835.04	0	0	244.2018	231
-1842.98	0	0	245.2589	232
-1850.93	0	0	246.3161	233
-1858.87	0	0	247.3732	234
-1866.81	0	0	248.4304	235
-1874.76	0	0	249.4875	236
-1882.7	0	0	250.5447	237
-1890.65	0	0	251.6018	238
-1898.59	0	0	252.659	239
-1906.53	0	0	253.7161	200
-1914.48	0	0	254.7733	240
-1922.42	25	4	255.8304	241
-1922.42			256.8876	242
-1930.30	37.5 56.25	9	250.8870	243
	56.25	9		244 245
-1946.25	56.25		259.0019	
-1954.2	62.5	10	260.059	246
-1962.14	87.5	14	261.1162	247
-1970.08	62.5	10	262.1733	248
-1978.03	75	12	263.2305	249
-1985.97	68.75	11	264.2877	250
-1993.92	62.5	10	265.3448	251
-2001.86	43.75	7	266.402	252
-2009.8	37.5	6	267.4591	253
-2017.75	31.25	5	268.5163	254
-2025.69	25	4	269.5734	255

		WadiRimaa		WadiRimaa			
Aree		refernce et	No.	actual et	[actual ET	No.
Area Hectar	histogram	rferencel ET valu	pixel	Area Hectar	histogram	valu	pixel
13725	2196		рілеі	13725	2196	0	рілсі
0	0	8.200598717	1	0	0	4.861699	1
0	0	16.40119743	2	0	0	9.723397	2
0	0	24.60179615	3	0	0	14.5851	3
0	0	32.80239487	4	0	0	19.44679	4
0	0	41.00299358	5	0	0	24.30849	5
0	0	49.2035923	6	0	0	29.17019	6
0	0	57.40419102	7	0	0	34.03189	7
0	0	65.60478973	8	0	0	38.89359	8
0	0	73.80538845	9	0	0	43.75529	9
0	0	82.00598717	10	0	0	48.61699	10
0	0	90.20658588	10	0	0	53.47868	10
0	0	98.4071846	12	0	0	58.34038	12
0	0		12	0	0		
0	0	106.6077833 114.808382	13	0	0	63.20208 68.06378	13 14
0	0	123.0089808	14	0	0	72.92548	14
0		131.2095795	15	0			
0	0 0		10	0	0	77.78718	16
0	0	139.4101782	17	0	0	82.64888 87.51058	17
		147.6107769	18	0			18
0	0	155.8113756		-	0	92.37227	19
0	0	164.0119743	20	0	0	97.23397	20
0	0	172.2125731	21	0	0	102.0957	21
0	0	180.4131718	22	0	0	106.9574	22
0	0	188.6137705	23	0	0	111.8191	23
0	0	196.8143692	24	0	0	116.6808	24
0	0	205.0149679	25	0	0	121.5425	25
0	0	213.2155666	26	0	0	126.4042	26
0	0	221.4161654	27	0	0	131.2659	27
0	0	229.6167641	28	0	0	136.1276	28
0	0	237.8173628	29	0	0	140.9893	29
0	0	246.0179615	30	0	0	145.851	30
0	0	254.2185602	31	0	0	150.7127	31
0	0 0	262.4191589	32	0	0	155.5744	32
0 0	0	270.6197577	33 34	0	0	160.4361	33
		278.8203564				165.2978	34
0	0	287.0209551	35	0	0	170.1595	35
0	0	295.2215538	36	0	0	175.0212	36
0	0	303.4221525	37	0	0	179.8828	37
0	0	311.6227512	38	0	0	184.7445	38
0	0	319.82335	39	0	0	189.6062	39
0	0	328.0239487	40	0	0	194.4679	40
0	0	336.2245474	41	0	0	199.3296	41
0	0	344.4251461	42	0	0	204.1913	42
0	0	352.6257448	43	0	0	209.053	43
0	0	360.8263435	44	0	0	213.9147	44
0	0	369.0269423	45	0	0	218.7764	45
0	0	377.227541	46	0	0	223.6381	46
0	0	385.4281397	47	0	0	228.4998	47

Tables show the actual and reference Evapotranspirations in Wadi Rimaa Area WadiRimaa WadiRimaa

l ol	0	393.6287384	48	0	0	233.3615	48
0	0	401.8293371	49	0	0	238.2232	49
0	0	410.0299358	50	0	0	243.0849	50
0	0	418.2305346	51	0	0	247.9466	51
0	0	426.4311333	52	0	0	252.8083	52
0	0	434.631732	53	0	0	252.0003	53
0	0	442.8323307	54	0	0	262.5317	54
0	0	451.0329294	55	0	0	267.3934	55
0	0	459.2335281	56	18.75	3	272.2551	56
0	0	467.4341269	57	0	0	277.1168	57
0	0	475.6347256	58	0	0	281.9785	58
0	0	483.8353243	59	0	0	286.8402	59
0	0	492.035923	60	0	0	200.0402	60
0	0	500.2365217	61	0	0	296.5636	61
0	0	508.4371204	62	0	0	301.4253	62
0	0	516.6377192	63	0	0	306.287	63
0	0	524.8383179	64	12.5	2	311.1487	64
0	0	533.0389166	65	6.25	2	316.0104	04 65
0	0		66	0.25	0		66
-	0	541.2395153		12.5	2	320.8721	
0	0	549.440114	67			325.7338	67
0	0	557.6407127	68	6.25	1	330.5955	68
0		565.8413115	69	0	0	335.4572	69
0	0	574.0419102	70	0	0	340.3189	70
0	0	582.2425089	71	6.25	1	345.1806	71
0	0	590.4431076	72	12.5	2	350.0423	72
0	0	598.6437063	73	6.25	1	354.904	73
0	0	606.844305	74	0	0	359.7657	74
0	0	615.0449038	75	12.5	2	364.6274	75
0	0	623.2455025	76	12.5	2	369.4891	76
0	0	631.4461012	77	0	0	374.3508	77
0	0	639.6466999	78	12.5	2	379.2125	78
0	0	647.8472986	79	6.25	1	384.0742	79
0	0	656.0478973	80	0	0	388.9359	80
0	0	664.2484961	81	12.5	2	393.7976	81
0	0	672.4490948	82	12.5	2	398.6593	82
0	0	680.6496935	83	0	0	403.521	83
0	0	688.8502922	84	6.25	1	408.3827	84
0	0	697.0508909	85	12.5	2	413.2444	85
0	0	705.2514896	86	18.75	3	418.1061	86
0	0	713.4520884	87	6.25	1	422.9678	87
0	0	721.6526871	88	25	4	427.8295	88
0	0	729.8532858	89	6.25	1	432.6912	89
0	0	738.0538845	90	12.5	2	437.5529	90
0	0	746.2544832	91	18.75	3	442.4146	91
0	0	754.4550819	92	6.25	1	447.2763	92
0	0	762.6556807	93	18.75	3	452.138	93
0	0	770.8562794	94	37.5	6	456.9997	94
0	0	779.0568781	95	12.5	2	461.8614	95
0	0	787.2574768	96	12.5	2	466.7231	96
0	0	795.4580755	97	12.5	2	471.5848	97
0	0	803.6586742	98	12.5	2	476.4465	98
0	0	811.859273	99	18.75	3	481.3082	99

0	0	820.0598717	100	37.5	6	486.1699	100
0	0	828.2604704	101	12.5	2	491.0316	101
0	0	836.4610691	102	31.25	5	495.8933	102
0	0	844.6616678	102	6.25	1	500.755	102
0	0	852.8622665	103	12.5	2	505.6167	103
0	0	861.0628653	104	37.5	6	510.4784	104
0	0	869.263464	105	25	4	515.3401	105
0	0	877.4640627	100	12.5	2	520.2018	100
					5		
0	0	885.6646614	108	31.25		525.0635	108
0	0	893.8652601	109	6.25	1	529.9252	109
0	0	902.0658588	110	18.75	3	534.7868	110
0	0	910.2664576	111	18.75	3	539.6485	111
0	0	918.4670563	112	37.5	6	544.5102	112
0	0	926.667655	113	56.25	9	549.3719	113
0	0	934.8682537	114	6.25	1	554.2336	114
0	0	943.0688524	115	12.5	2	559.0953	115
0	0	951.2694511	116	18.75	3	563.957	116
0	0	959.4700499	117	12.5	2	568.8187	117
0	0	967.6706486	118	50	8	573.6804	118
0	0	975.8712473	119	37.5	6	578.5421	119
0	0	984.071846	120	25	4	583.4038	120
0	0	992.2724447	121	43.75	7	588.2655	121
0	0	1000.473043	122	37.5	6	593.1272	122
0	0	1008.673642	123	56.25	9	597.9889	123
0	0	1016.874241	124	31.25	5	602.8506	124
0	0	1025.07484	125	31.25	5	607.7123	125
0	0	1033.275438	126	31.25	5	612.574	126
0	0	1041.476037	127	43.75	7	617.4357	127
0	0	1049.676636	128	31.25	5	622.2974	128
0	0	1057.877234	129	31.25	5	627.1591	129
0	0	1066.077833	130	12.5	2	632.0208	130
0	0	1074.278432	131	6.25	1	636.8825	131
0	0	1082.479031	132	62.5	10	641.7442	132
0	0	1090.679629	133	18.75	3	646.6059	133
0	0	1098.880228	134	56.25	9	651.4676	134
0	0	1107.080827	135	31.25	5	656.3293	135
0	0	1115.281425	136	31.25	5	661.191	136
0	0	1123.482024	137	56.25	9	666.0527	137
0	0	1131.682623	138	37.5	6	670.9144	138
0	0	1139.883222	139	62.5	10	675.7761	139
0	0	1148.08382	140	37.5	6	680.6378	140
0	0	1156.284419	140	43.75	7	685.4995	140
0	0	1164.485018	142	+ <u>3.75</u> 50	8	690.3612	142
0	0	1172.685616	142	43.75	7	695.2229	142
0	0	1180.886215	143	56.25	9	700.0846	143
0	0	1189.086814	144	50.25	8	700.0846	144
0	0			43.75	<u> </u>		145
		1197.287413	146			709.808	
0	0	1205.488011	147	25	4	714.6697	147
0	0	1213.68861	148	43.75	7	719.5314	148
0	0	1221.889209	149	37.5	6	724.3931	149
0	0	1230.089808	150	12.5	2	729.2548	150
0	0	1238.290406	151	50	8	734.1165	151

l ol	0	1246.491005	152	31.25	5	738.9782	152
0	0	1254.691604	153	75	12	743.8399	153
0	0	1262.892202	154	37.5	6	748.7016	154
0	0	1271.092801	155	37.5	6	753.5633	155
0	0	1279.2934	156	75	12	758.425	156
0	0	1287.493999	157	50	8	763.2867	157
0	0	1295.694597	158	50	8	768.1484	158
0	0	1303.895196	159	56.25	9	773.0101	159
0	0	1312.095795	160	62.5	10	777.8718	160
0	0	1320.296393	161	56.25	9	782.7335	161
0	0	1328.496992	162	81.25	13	787.5952	162
0	0	1336.697591	163	50	8	792.4569	163
0	0	1344.89819	164	56.25	9	797.3186	164
0	0	1353.098788	165	25	4	802.1803	165
0	0	1361.299387	166	62.5	10	807.042	166
0	0	1369.499986	167	75	10	811.9037	160
0	0	1377.700584	167	81.25	12	816.7654	167
0	0	1385.901183	169	62.5	10	821.6271	169
0	0	1394.101782	103	50	8	826.4888	109
0	0	1402.302381	170	87.5	14	831.3505	170
0	0	1410.502979	171	25	4	836.2122	171
0	0	1418.703578	172	50	8	841.0739	172
0	0	1426.904177	173	31.25	5	845.9356	173
0	0	1435.104775	174	81.25	13	850.7973	174
0	0	1443.305374	175	43.75	7	855.659	175
0	0	1451.505973	170	43.75	8	860.5207	170
0	0	1451.505973	177	81.25	13	865.3824	177
0	0		178	31.25	5	870.2441	178
0		1467.90717			<u>5</u> 8		
0	0	1476.107769	180	50 69 75	<u> </u>	875.1058	180
0	0	1484.308368	181 182	68.75 100	16	879.9675 884.8292	181 182
0	0	1492.508966 1500.709565	182	68.75	10	889.6908	182
0	0	1508.910164	183	43.75	7	894.5525	183
-				43.75	_	899.4142	
0	0	1517.110763 1525.311361	185 186	43.75 62.5	<u> </u>	904.2759	185 186
0	0	1533.51196	180		8	904.2759	180
0	0	1541.712559	187	50 62.5	<u> </u>	909.1378	188
	0						
0	0	1549.913157 1558.113756	189 190	56.25 43.75	<u> </u>	918.861 923.7227	189 190
0	0	1566.314355	190	43.75	3	923.7227 928.5844	190
0	0		191	50	8		191
0	0	1574.514954 1582.715552	192	50 18.75	3	933.4461 938.3078	192
0	0	1590.916151	193 194	43.75	7	938.3078	193
					7		
0	0	1599.11675 1607.317348	195 196	43.75 31.25	5	948.0312 952.8929	195 196
0	0				5 7		
0	0	1615.517947	197	43.75	7	957.7546	197
		1623.718546	198	43.75		962.6163	198
0	0	1631.919145	199	25 42 75	4	967.478	199
0	0	1640.119743	200	43.75	7	972.3397	200
0	0	1648.320342	201	12.5	2	977.2014	201
0	0	1656.520941	202	12.5	2	982.0631	202
0	0	1664.721539	203	0	0	986.9248	203

0	0	1672.922138	204	12.5	2	991.7865	204
0	0	1681.122737	205	6.25	1	996.6482	205
0	0	1689.323336	206	12.5	2	1001.51	206
0	0	1697.523934	207	37.5	6	1006.372	207
0	0	1705.724533	208	6.25	1	1011.233	208
0	0	1713.925132	209	6.25	1	1016.095	209
0	0	1722.125731	210	18.75	3	1020.957	210
0	0	1730.326329	211	12.5	2	1025.818	211
0	0	1738.526928	212	0	0	1030.68	212
0	0	1746.727527	213	6.25	1	1035.542	213
0	0	1754.928125	214	6.25	1	1040.404	214
0	0	1763.128724	215	12.5	2	1045.265	215
0	0	1771.329323	216	0	0	1050.127	216
0	0	1779.529922	217	0	0	1054.989	217
0	0	1787.73052	218	12.5	2	1059.85	218
0	0	1795.931119	219	12.5	2	1064.712	219
0	0	1804.131718	220	6.25	1	1069.574	220
0	0	1812.332316	221	0.20	0	1074.435	221
0	0	1820.532915	222	6.25	1	1079.297	222
0	0	1828.733514	223	18.75	3	1084.159	223
0	0	1836.934113	224	18.75	3	1089.02	224
0	0	1845.134711	225	6.25	1	1093.882	225
0	0	1853.33531	226	12.5	2	1098.744	226
0	0	1861.535909	227	0	0	1103.606	220
0	0	1869.736507	228	18.75	3	1103.000	228
0	0	1877.937106	220	6.25	1	1113.329	220
0	0	1886.137705	230	6.25	1	1118.191	230
0	0	1894.338304	230	6.25	1	1123.052	230
0	0	1902.538902	231	0.25	0	1123.052	231
0	0	1902.538902	232	0	0	1127.914	232
0	0	1918.9401	233	6.25	1	1137.637	233
0	0	1918.9401	234	12.5	2	1142.499	234
0	0	1935.341297	235	0	0	1142.499	235
0	0		230	0	0		230
0	0	1943.541896 1951.742495	237	0	0	1152.223 1157.084	237
0	0	1959.943093	238	6.25	1	1161.946	230
6.25	1	1968.143692	239	0.25	0	1166.808	239
87.5	14	1976.344291	240	0	0	1171.669	240
131.25	21	1970.344291	241	6.25	1	1176.531	241
156.25	21		242	0.25	0	1181.393	242
187.5	30	1992.745488 2000.946087	243	12.5	2	1186.254	243
	30			6.25			
231.25	52	2009.146686	245		1	1191.116 1195.978	245
325		2017.347284	246	0	0		246
450	72	2025.547883	247	0	0	1200.84	247
450	72	2033.748482	248	-	0	1205.701	248
856.25	137	2041.94908	249	0	0	1210.563	249
812.5	130	2050.149679	250	0	0	1215.425	250
750	120	2058.350278	251	6.25	1	1220.286	251
412.5	66	2066.550877	252	0	0	1225.148	252
106.25	17	2074.751475	253	0	0	1230.01	253
56.25	9	2082.952074	254	6.25	1	1234.871	254
18.75	3	2091.152673	255	12.5	2	1239.733	255

Table showing the precipitations and the surface water balance in Wadi Rimaa Area

			WadiRimaa presepitation	
P - ETa	Area Hectar	histogram	rainfall p valu	No. pixel
	13725	2196	0	
- 2.84179	0	0	2.019911766	1
5.68357	0	0	4.039823532	2
8.52536	0	0	6.059735298	3
11.3671	0	0	8.079647064	4
14.2089	0	0	10.09955883	5
17.0507	0	0	12.1194706	6
19.8925	0	0	14.13938236	7
22.7343	0	0	16.15929413	8
25.5761	0	0	18.17920589	9
28.4179	0	0	20.19911766	10
- 31.2597	0	0	22.21902943	11
34.1014	0	0	24.23894119	12
36.9432	0	0	26.25885296	13
-39.785	0	0	28.27876472	14
- 42.6268	0	0	30.29867649	15
- 45.4686	0	0	32.31858826	16
- 48.3104	0	0	34.33850002	17
- 51.1522	0	0	36.35841179	18
-53.994	0	0	38.37832355	19
- 56.8357	0	0	40.39823532	20
- 59.6775	0	0	42.41814709	21
- 62.5193	0	0	44.43805885	22
- 65.3611	0	0	46.45797062	23
- 68.2029	0	0	48.47788239	24
- 71.0447	0	0	50.49779415	25
- 73.8865	0	0	52.51770592	26

-	1	1		
76.7282	0	0	54.53761768	27
-79.57	0	0	56.55752945	28
82.4118	0	0	58.57744122	29
85.2536	0	0	60.59735298	30
- 88.0954	0	0	62.61726475	31
- 90.9372	0	0	64.63717651	32
-93.779	0	0	66.65708828	33
96.6208	0	0	68.67700005	34
99.4625	0	0	70.69691181	35
102.304	0	0	72.71682358	36
- 105.146	0	0	74.73673534	37
- 107.988	0	0	76.75664711	38
-110.83	0	0	78.77655888	39
- 113.671	0	0	80.79647064	40
- 116.513	0	0	82.81638241	41
- 119.355	0	0	84.83629417	42
- 122.197	0	0	86.85620594	43
- 125.039	0	0	88.87611771	44
-127.88	0	0	90.89602947	45
- 130.722	0	0	92.91594124	46
- 133.564	0	0	94.935853	47
- 136.406	0	0	96.95576477	48
- 139.248	0	0	98.97567654	49
- 142.089	0	0	100.9955883	50
- 144.931	0	0	103.0155001	51
- 147.773	0	0	105.0354118	52
- 150.615	0	0	107.0553236	53
- 153.456	0	0	109.0752354	54
- 156.298	0	0	111.0951471	55
-159.14	0	0	113.1150589	56
- 161.982	0	0	115.1349707	57
-	0	0	117.1548824	58

164.824				
- 167.665	0	0	119.1747942	59
- 170.507	0	0	121.194706	60
- 173.349	0	0	123.2146177	61
- 176.191	0	0	125.2345295	62
- 179.033	0	0	127.2544413	63
- 181.874	0	0	129.274353	64
- 184.716	0	0	131.2942648	65
- 187.558	0	0	133.3141766	66
-190.4	0	0	135.3340883	67
193.242	0	0	137.3540001	68
- 196.083	0	0	139.3739119	69
- 198.925	0	0	141.3938236	70
- 201.767	0	0	143.4137354	71
- 204.609	0	0	145.4336472	72
-207.45	0	0	147.4535589	73
- 210.292	0	0	149.4734707	74
- 213.134	0	0	151.4933825	75
- 215.976	0	0	153.5132942	76
- 218.818	0	0	155.533206	77
- 221.659	0	0	157.5531178	78
- 224.501	0	0	159.5730295	79
- 227.343	0	0	161.5929413	80
- 230.185	0	0	163.6128531	81
- 233.027	0	0	165.6327648	82
- 235.868	0	0	167.6526766	83
-238.71	0	0	169.6725883	84
- 241.552	0	0	171.6925001	85
- 244.394	0	0	173.7124119	86
- 247.235	0	0	175.7323236	87
- 250.077	0	0	177.7522354	88

- 252.919	0	0	179.7721472	89
- 255.761	0	0	181.7920589	90
- 258.603	0	0	183.8119707	91
- 261.444	0	0	185.8318825	92
- 264.286	0	0	187.8517942	93
267.128	0	0	189.871706	94
-269.97	0	0	191.8916178	95
272.812	0	0	193.9115295	96
275.653	0	0	195.9314413	97
278.495	0	0	197.9513531	98
281.337	0	0	199.9712648	99
- 284.179	0	0	201.9911766	100
-287.02	0	0	204.0110884	101
289.862	0	0	206.0310001	102
- 292.704	0	0	208.0509119	103
- 295.546	0	0	210.0708237	104
- 298.388	0	0	212.0907354	105
301.229	0	0	214.1106472	106
- 304.071	0	0	216.130559	107
- 306.913	0	0	218.1504707	108
- 309.755	0	0	220.1703825	109
- 312.597	0	0	222.1902943	110
315.438	0	0	224.210206	111
-318.28	0	0	226.2301178	112
321.122	0	0	228.2500296	113
323.964	0	0	230.2699413	114
- 326.805	0	0	232.2898531	115
329.647	0	0	234.3097649	116
332.489	0	0	236.3296766	117
- 335.331	0	0	238.3495884	118
- 338.173	0	0	240.3695002	119

-				
341.014	0	0	242.3894119	120
343.856	0	0	244.4093237	121
346.698	0	0	246.4292355	122
-349.54	0	0	248.4491472	123
352.382	0	0	250.469059	124
355.223	0	0	252.4889708	125
358.065	0	0	254.5088825	126
- 360.907	0	0	256.5287943	127
363.749	0	0	258.5487061	128
- 366.591	0	0	260.5686178	129
369.432	0	0	262.5885296	130
- 372.274	0	0	264.6084414	131
- 375.116	0	0	266.6283531	132
- 377.958	0	0	268.6482649	133
- 380.799	0	0	270.6681767	134
- 383.641	0	0	272.6880884	135
386.483	0	0	274.7080002	136
389.325	0	0	276.7279119	137
- 392.167	0	0	278.7478237	138
395.008	0	0	280.7677355	139
-397.85	0	0	282.7876472	140
400.692	0	0	284.807559	141
403.534	0	0	286.8274708	142
406.376	0	0	288.8473825	143
- 409.217	0	0	290.8672943	144
- 412.059	0	0	292.8872061	145
- 414.901	0	0	294.9071178	146
- 417.743	0	0	296.9270296	147
- 420.584	0	0	298.9469414	148
- 423.426	0	0	300.9668531	149
-	0	0	302.9867649	150

426.268				
-429.11	0	0	305.0066767	151
431.952	0	0	307.0265884	152
434.793	0	0	309.0465002	153
- 437.635	0	0	311.066412	154
- 440.477	0	0	313.0863237	155
- 443.319	0	0	315.1062355	156
- 446.161	0	0	317.1261473	157
- 449.002	0	0	319.146059	158
- 451.844	0	0	321.1659708	159
- 454.686	0	0	323.1858826	160
- 457.528	0	0	325.2057943	161
- 460.369	0	0	327.2257061	162
- 463.211	0	0	329.2456179	163
466.053	0	0	331.2655296	164
- 468.895	0	0	333.2854414	165
- 471.737	0	0	335.3053532	166
- 474.578	0	0	337.3252649	167
-477.42	0	0	339.3451767	168
480.262	0	0	341.3650885	169
- 483.104	0	0	343.3850002	170
- 485.946	0	0	345.404912	171
- 488.787	0	0	347.4248238	172
- 491.629	0	0	349.4447355	173
- 494.471	0	0	351.4646473	174
- 497.313	0	0	353.4845591	175
- 500.154	0	0	355.5044708	176
- 502.996	0	0	357.5243826	177
- 505.838	0	0	359.5442944	178
-508.68	0	0	361.5642061	178
- 511.522	0	0	363.5841179	180

- 514.363		0	265 6040207	181
-	0	0	365.6040297	
517.205	0	0	367.6239414	182
520.047	31.25	5	369.6438532	183
522.889	43.75	7	371.663765	184
525.731	50	8	373.6836767	185
528.572	56.25	9	375.7035885	186
531.414	50	8	377.7235003	187
- 534.256	56.25	9	379.743412	188
- 537.098	56.25	9	381.7633238	189
-539.94	50	8	383.7832355	190
542.781	56.25	9	385.8031473	191
545.623	56.25	9	387.8230591	192
- 548.465	56.25	9	389.8429708	193
- 551.307	62.5	10	391.8628826	194
- 554.148	56.25	9	393.8827944	195
-556.99	56.25	9	395.9027061	196
559.832	56.25	9	397.9226179	197
- 562.674	50	8	399.9425297	198
- 565.516	62.5	10	401.9624414	199
- 568.357	62.5	10	403.9823532	200
- 571.199	68.75	11	406.002265	201
- 574.041	68.75	11	408.0221767	202
- 576.883	75	12	410.0420885	203
- 579.725	81.25	13	412.0620003	204
- 582.566	81.25	13	414.081912	205
- 585.408	100	16	416.1018238	206
-588.25	100	16	418.1217356	207
- 591.092	125	20	420.1416473	208
- 593.933	131.25	21	422.1615591	209
- 596.775	118.75	19	424.1814709	210
- 599.617	112.5	18	426.2013826	211

-				
602.459	100	16	428.2212944	212
605.301	81.25	13	430.2412062	213
608.142	75	12	432.2611179	214
- 610.984	62.5	10	434.2810297	215
613.826	75	12	436.3009415	216
616.668	56.25	9	438.3208532	217
-619.51	68.75	11	440.340765	218
622.351	62.5	10	442.3606768	219
- 625.193	56.25	9	444.3805885	220
- 628.035	68.75	11	446.4005003	221
- 630.877	56.25	9	448.4204121	222
633.718	56.25	9	450.4403238	223
-636.56	62.5	10	452.4602356	223
-030.30	02.5	10	432.4002330	227
639.402	43.75	7	454.4801474	225
642.244	68.75	11	456.5000591	226
645.086	56.25	9	458.5199709	227
647.927	50	8	460.5398827	228
650.769	62.5	10	462.5597944	229
653.611	43.75	7	464.5797062	230
656.453	62.5	10	466.599618	231
659.295	68.75	11	468.6195297	232
662.136	43.75	7	470.6394415	233
664.978	68.75	11	472.6593533	234
-667.82	68.75	11	474.679265	235
670.662	50	8	476.6991768	236
673.503	75	12	478.7190886	237
676.345	81.25	13	480.7390003	238
- 679.187	68.75	11	482.7589121	239
- 682.029	125	20	484.7788239	240
- 684.871	106.25	17	486.7987356	241
- 687.712	106.25	17	488.8186474	242

690.554	112.5	18	490.8385592	243
-				
693.396	118.75	19	492.8584709	244
-				
696.238	106.25	17	494.8783827	245
-699.08	87.5	14	496.8982944	246
-				
701.921	87.5	14	498.9182062	247
-				
704.763	68.75	11	500.938118	248
-				
707.605	68.75	11	502.9580297	249
-				
710.447	62.5	10	504.9779415	250
-				
713.289	50	8	506.9978533	251
-716.13	37.5	6	509.017765	252
-				
718.972	25	4	511.0376768	253
-				
721.814	25	4	513.0575886	254
-				
724.656	25	4	515.0775003	255

6. CONCLUSIONS

MODIS satellite images were used to classify the *gross* major irrigated areas in Zabeed Area in Yemen. The resolution of the MODIS satellite images is 250 by 250 meter and does not allow to distinguish individual fields. The *actual* irrigated area is lower and was determined by multiplying the gross irrigated area with an irrigated fraction that was derived from Landsat satellite images that have a spatial resolution of 30 by 30 meter. The actual irrigated area is estimated 71,304 ha.

The annual average total system efficiency for Zabeed is 47%. Monthly discharge data are highly questionable because the flow data do not match with the gross irrigation requirements based on SEBAL and TRRM precipitation, and the agricultural seasons monitored with MODIS. Nevertheless, a monthly water balance is provided, which suggests that groundwater is abstracted in September to November.

The land use classification has been ground truthed, and the average accuracy appeared to be 83%. Such performance is in agreement with similar studies conducted outside Yemen. Because of these accuracies and acceptable results on water use, it is concluded that satellite remote sensing has potential.

8. REFERENCES

- Almhab, Ayoub and Ibrahim Busu (2009). Estimation of evapotranspiration using fused remote sensing image data and energy balance model for improving water management in arid area. Computer Engineering and Technology, 2009. Volume 2, 22-24 Jan. 2009 Page(s):529 533 . <u>http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4769659&isnumber=4769538</u>
- Almhab, Ayoub and Ibrahim Busu (2008). Estimation of Evapotranspiration with modified SEBAL model using landsat-TM and NOAA-AVHRR images in arid mountains area, Asian Modeling and Simulation (AMS) 2008, *IEEE computer society*, pp350-355, 2008 IEEE. http://ieeexplore.ieee.org/iel5/4530427/4530428/04530501.pdf?tp=&arnumber=4530501&isn umber=4530428
- Almhab, A. and Ibrahim Busu (2008). the approaches for oasis desert vegetation information abstraction based on medium -resolution Lansat TM image: A case study in desert wadi Hadramut Yemen, Asian Modeling and Simulation Asian Modeling and Simulation (AMS) 2008, *IEEE computer society*, pp356-360, 2008 IEEE,. <u>http://ieeexplore.ieee.org/iel5/4530427/4530428/04530502.pdf?tp=&arnumber=4530502&isn</u> <u>umber=4530428</u>
- Almhab A., Ibrahim B., (2008), Regional Water Balance Visualization Using Remote Sensing And Gis Techniques with Application to the Arid Watershed Area . ACRS2008, Sere lank.
- Almhab A., Ibrahim B., (2008), *Remote sensing of available solar energy modelling in mountainous areas*. Post graduate seminar alam bena 2008,UTM, Skudai Johor, Malaysia.
- Almhab A., Ibrahim B., (2008), *Application of remote sensing data for environmental monitoring in semiarid mountain areas: a case study in yemen mountains.* post graduate seminar alam bena 2008,UTM, Skudai Johor, Malaysia.
- Almhab A., Ibrahim B., (2008), Regional Water Balance Visualization Using Remote Sensing And Gis Techniques with Application to the Arid mountain basin area . IPGCES 2008,UTM, Skudai Johor, Malaysia. (
- Almhab Ayoub, Ibrahim Busu (2008). Decision Support System for Estimating Actual crop Evapotranspiration using Remote Sensing, GIS and Hydrological Models, Malaysia Remote Sensing Society (MRSS)2008, Kula Lumpur, Malaysia.
- Almhab A. A., C. V.Tol (2010). VALIDATION OF ESTIMATED TRMM RAINFALL DATA BY RAIN GAUGES IN YEMEN, <u>31st Asian Conference on Remote Sensing (ACRS) 1st – 5th</u> of November 2010, at the, Hanoi, Vietnam.
- Almhab A. A. (2011). Assessment of Crop Water Requirement and annual planning of water allocation in Yemen using remote sensing dada and M-SEBAL MODEL, ISNET/ RJGC Workshop on application of satellite technology in water resources management, 18 -22/9/2011. Amman, Jordan.
- Almhab A. A. (2010). Predicting Evapotranspiration From MODIS And M-SEBAL Model In Arid Regions, ITC, Enshgedai, The Netherlands .
- Askary. G.H., S.M. Pourbagher, A.M. Noorian, J.B. Jamali, S. Javanmard , 2007, validation of estimated TRMM rainfall data by rain gauges in Iran, ACRS 2007, Kula lumpor , Malaysia.
- Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A. and Holtslag, A.A.M., 1998, A remote sensing surface energy balance algorithm for land (SEBAL) 1,2. Formulation. Journal Hydrology 212/213, 198–212.
- Nazrul Islam, Md., Uyeda, H. 2006. Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sensing of Environment, 108, pp.264–276.

Surface Water Resources, Vol IV, High Water Cuncil, 1992

- Tihamah Basin Water Resources Study, Technical Report 3, Groundwater, Final, DHV Consulting Engineers, April 1988.
- Tihamah Basin Water Resources Study (TBWRS), ain Report, Final, DHV Consulting Engineers, April 1988.
- Tihamah Basin Water Resources Study, Technical Report 3, Groundwater, Annexes 3,6,8, Final, DHV Consulting Engineers, April 1988.

TNO- DGV Institute of Applied Geo-Siences Annex 2a, Data on geologicaly or geovisically logged boreholes.

Appendix 1 Precipitation validation

See : Almhab A. A., C. V.Tol (2010). VALIDATION OF ESTIMATED TRMM RAINFALL DATA BY RAIN GAUGES IN YEMEN, <u>31st Asian Conference on Remote Sensing (ACRS) 1st – 5th of</u> November 2010, at the, Hanoi, Vietnam.

Appendix 2 M-SEBAL model

See : Almhab, Ayoub and Ibrahim Busu (2008). Estimation of Evapotranspiration with modified SEBAL model using landsat-TM and NOAA-AVHRR images in arid mountains area, Asian Modeling and Simulation (AMS) 2008, *IEEE computer society ,pp350-355, 2008 IEEE*. <u>http://ieeexplore.ieee.org/iel5/4530427/4530428/04530501.pdf?tp=&arnumber=4530501&isnumber=4530428</u>

Appendix 3. Land Use Map Zabeed

Appendix 4. Actual Evapotranspiration

Appendix 5. Potential Evapotranspiration Zabeed