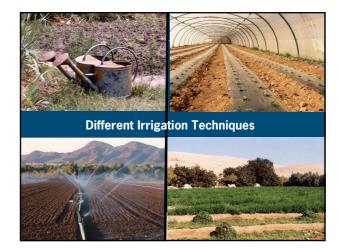


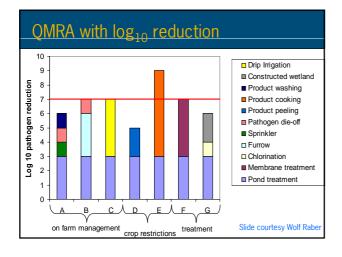
Increasing wastewater flows Increase over a period of around 25 years: Population growth (3%) > x 2 Urbanisation (3%) > x 2 Economic development > x? What happened and will happen to Sana'a and other Yemeni cities??? Last 25 years Coming 25 years

3 Approaches to 'treat' wastewater Discharge into natural waters or sinks Leads to environmental pollution and economic damage at medium and long-term Construct WWTPs at secondary or advanced level Leads to environmental protection, but at high costs Agricultural use Immediate benefits, reduces environmental pollution

Country	Wastewater use	Renewable water resources
	(Mm ³ /day/million)	(M ³ /cap/yr)
Yemen	3	125
Morocco	3	917
China	11	2104
Egypt	26	703
Jordan	40	153
Tunisia	51	452
Syria	55	791
Mexico	136	4214
Israel	166	252
Qatar	170	45



Create storage in irrigation scheme


- > Link between treatment and agricultural use
- > Stores effluent in excess of irrigation water use (operational; seasonal)
- Is a source of irrigation water in periods of high water demand
- > Acts as buffer in case of calamities
- > Can act as additional treatment

The reverse design approach

- ➤ Effluent quality fixed by the required water characteristics in downstream irrigation (negotiable)
- The <u>location</u> of the treatment plant in relation to the agricultural field and additional fresh water resources
- ➤ <u>Decentralization</u> in view of cost reduction and the exclusion of toxic waste streams in the sewerage
- ➤ The lay-out of the water distribution system, incl. the construction of irrigation water <u>storage</u> basins

Research challenges

- Technological:
 - Design criteria for treatment plants serving agriculture
 - How to make irrigated agriculture a treatment step
- Environmental:
 - How to control health risks for farmers and consumers
 - What are long term effects on soil, surface- and groundwater
- Socio-economic:
 - Develop policies to properly involve stakeholders
 - How to create required knowledge and acceptance with farmers and consumers

