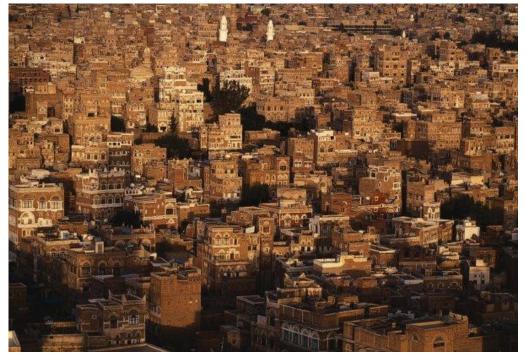


The Potential Of Rooftop Rainwater Harvesting For Sana'a, Yemen

Master Thesis Defense


By: Musa'ed M. Aklan

Supervisors :

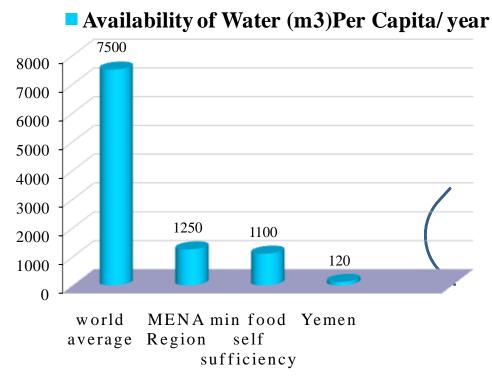
Dr. Abbas AL-Omari, Prof

Dr. Lars Ribbe, Prof

Dr. Taha Taher, Prof

January, 2011

www.iwrm-master.info

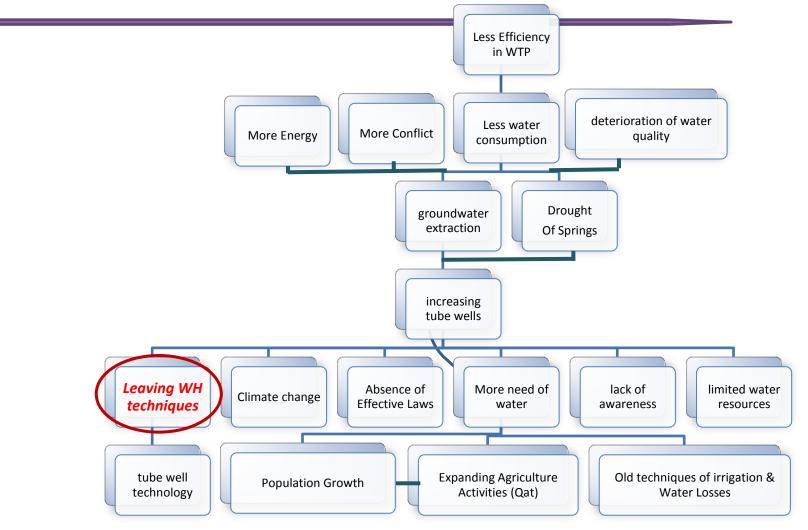

Fachhochschule Köln Cologne University of Applied Sciences

Outline of the presentation

- Introduction
 - Problem statement
 - Importance of the study
 - Open Questions
 - Objectives of the Study
- Methodology and results
- Conclusions and recommendations

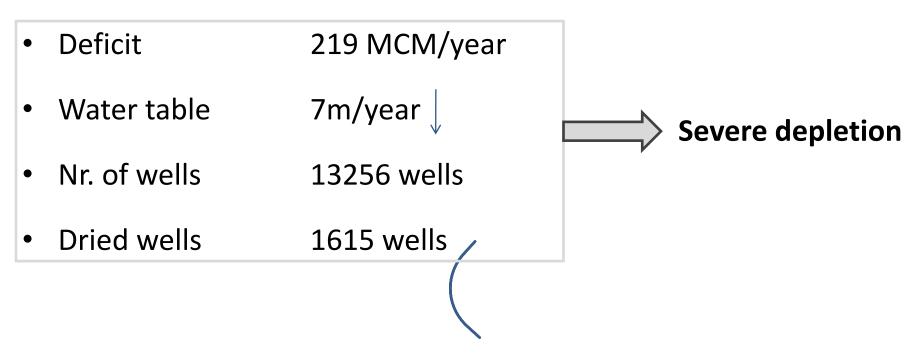
Introduction

Problem statement



Source: Hellegers, et al., 2008

Introduction Methodology & Results Conclusions & Recommendations - Problem statement


Problem tree for Sana'a basin

Introduction Methodology & Results Conclusions & Recommendations

- Problem statement

Problem statement "figures and numbers"

Sana'a is the first capital all over the world is running out of water

Introduction Methodology & Results Conclusions & Recommendations - Problem statement

Importance of the study

- The first RTRWH study in urban areas
- A need for studies exploring new sources of water other than groundwater
- Only 55% of the city is covered by network

IntroductionMethodology & ResultsConclusions & Recommendations- Importance of the study

Open questions

• How much of rainwater can be harvested from the rooftops of

Sana'a ? Is it Feasible?

Acceptable?

Usable?; and

Applicable?

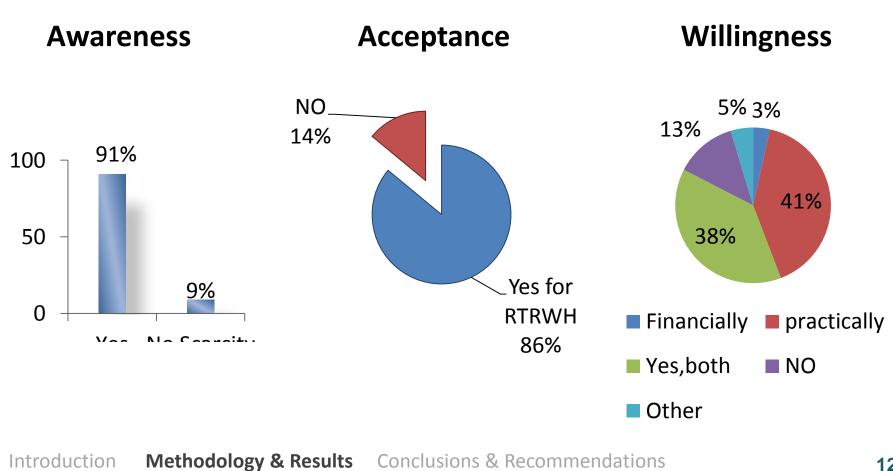
- What are the types, sizes and sites of the systems? It is costs?
- To what extent RTRWH could contribute to groundwater saving?

IntroductionMethodology & ResultsConclusions & Recommendations- Study questions

Objectives of the study

- To estimate the amount of water that could be captured from roofs
- To identify for what purposes this water could be used
- To identify potential sites, techniques, and sizes for tanks
- To identify other possibilities of RWH in Sana'a Basin other than RTRW

Methodology and Results


Social survey...methodology

- Key informant interviews
- Interviews
 - Households
 - Existing RTRWH
 - Public building

Social survey...results

1 - Social survey

Rainwater Sampling...Methodology

- Six samples
 - 4 from gutters
 - 2 from tanks

Rainwater quality...results

Parameter	Unit	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Mean Value	Samples above	NWRA	WHO
pН		6.83	7	7.92	7.43	7.83	7.94	7.49	0	6.5 - 9	6.5 - 8.5
Turbidity		NA	NA	NA	NA	2.34	6.4	4.37	1	5	5
Electrical Conductivity [EC]	μS/cm	106	105.4	135.8	374	115.3	205	173.58	0	2500	
Total Dissolves Solids [TDS]	mg/L	69	69	88	243	75	133	112.83	0	1500	1000
Total Hardness [TH as CaCO ₃]	mg/L	43	45	30	148	44	75	64.17	0	500	500
Total Alkalinity 【TA as CaCO3】	mg/L	34	36	35	53	39	58	42.50	0		
Bicarbonate [HCO ₃]	mg/L	41	44	43	65	47	71	51.83	0	500	
Carbonate [CO ₃]	mg/L	NIL	0								
Chloride [CI]	mg/L	1	1	6	46	7	11	12.00	0	600	250
Sulphate SO4	mg/L	19	13	16	33	15	40	22.67	0	400	400
Fluoride [F]	mg/L	< 0.01	< 0.01	< 0.01	0.14	< 0.01	0.43	0.29	0	1.5	1.5
Calcium 【Ca】	mg/L	9	11	8	49	16	20	18.83	0	200	
Magnesium [Mg]	mg/L	5	4	2	6	1	6	4.00	0	150	
Sodium [Na]	mg/L	4	4	12	9.9	6.4	17	8.88	0	400	200
Potassium 【K】	mg/L	5.3	5	9.3	8.5	4.9	6.1	6.52	0	12	
Nitrate as NO ₃	mg/L	<1	<1	1.32	11.88	15	16	11.05	0	50	50
Iron [Fe]	mg/L	0.07	0.09	0.06	0.3	0.084	0.068	0.11	0	1	0.3
Total Colliforms	col./100mL	NA	NA	NIL	NIL	21	3	12.00	2	0	10 *
Fecal Coliforms	col./100mL	NA	NA	NIL	NIL	17	1	9.00	2	0	0

* Here the guideline value of Fecal Coliform is only for an individual water supply source. For the municipal water supply system, the value should be zero.

Introduction Methodology & Results Conclusions & Recommendations 2 - RW quality assessments

Total coliform, Fecal coliform

Total coliform...concentration and treatments required

Range of	Range of Degree of		Treatment Procedure		
TC	Contamination	samples			
0-3	0 3		No treatment required		
3- 50	1	1	Chlorination only		
51 5000	2	0	Flocculation, Sedimentation then		
51- 5000		0	Chlorination		
>50000	2	0	Very high contamination, need		
	3	0	special treatment		

Source: (Al-Khatib, et al., 2004)

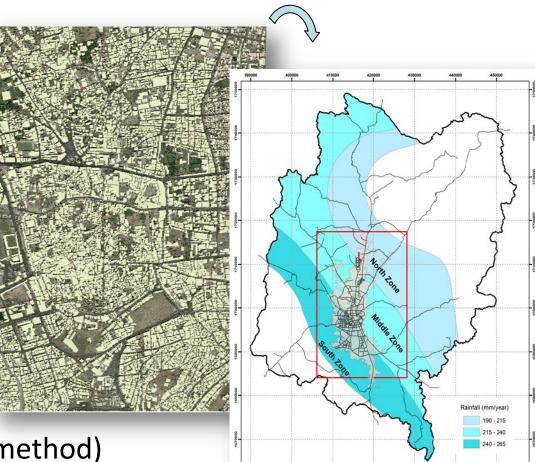
Fecal contamination..typical classification according to level of risk

	Number of tested samples	Degree of Risk		
0	2	In conformity with WHO guidelines		
1-10	1	Low Risk		
11-100	1	Intermediate risk		
101-1000	0	High risk		
> 1000	0	Very high risk		

Source: WHO, (1997)

Introduction Methodology & Results Conclusions & Recommendations 2 - RW quality assessments

Constraints of Sampling


Why only six samples?

Why not from tanks?

Introduction Methodology & Results Conclusions & Recommendations 2 - RW quality assessments

Potential harvested quantity...methodology

- Digitizing
 - Satellite image
 - Envi
 - AutoCAD
 - isohyets map
 - ArcGIS
- Zoning
- Roof areas

Water quantity (rational method)

Introduction Methodology & Results Conclusions & Recommendations 3 - RW quantity calculations

Potential harvested quantity...results

Zone Name	Annual Rainfall mm/year	Average Rainfall mm/year	Rooftops Area (km2)	Harvested water (MCM/year)
South zone	190 - 215	202.5	0.423	0.069
Middle zone	215 – 240	227.5	15.642	2.840
North zone	240 – 265	252.5	17.247	3.487
Total			33.311	6.395

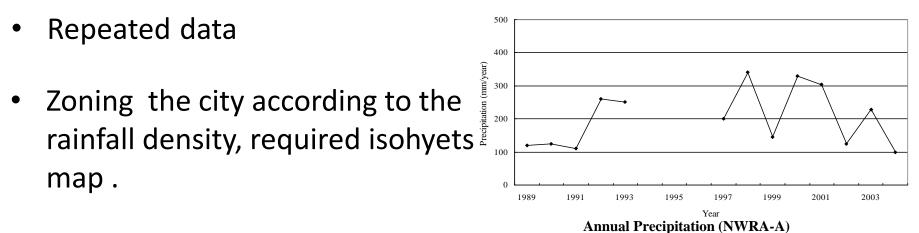
Introduction

Methodology & Results Conclusions & Recommendations
 3 - RW quantity calculations

Potential harvested quantity...results

- Water demand
 - Population = 2.28 million
 - Per capita consumption = 30-50 liters/day
 - Demand = 33.3 MCM/year
 - Public network water losses = 34%
 - Supplying 6.4 MCM requires 2.2 MCM as losses
 8.6 MCM = 26% of the demand

Pumping, distributing, maintaining, and operating costs


Introduction Methodology & Results Conclusions & Recommendations 3 - RW quantity calculations

Potential harvested quantity...results

- Any drop counts
- Flood mitigation

Data collection.. constraints

- Daily Rainfall data for 16 stations
 - Gabs and missing data
- Accumulation of data over several days recorded as a daily rainfall.
- confusion between no data days and zero rainfall.

Introduction Methodology & Results Conclusions & Recommendations 3 - RW quantity calculations

Potential Sites, Techniques and Sizes of the

Tanks

Main Copm

- Roof Tops
- Gutters
- Tanks

Devices for better quality

- Filtration screen (1)
- First flush device (2)

First
 Flush

downpi

• Filtering before drinking(3)

Required practices

- Hygienic practices
- Frequently cleaning

(3)

Introduction

Methodology & ResultsConclusions & Recommendations4 - Potential sites & techniques

The matrix of selection process of tanks

			Tank type						
No	Area properties	Examples	Brick cement	Ferrocement	Block	Concrete	Shared		
1	Crowded built area	Old Sana'a	$\sqrt{\sqrt{1}}$			\checkmark	$\sqrt{\sqrt{1}}$		
2	 Non-crowded area V<30m³ 		$\sqrt{\sqrt{2}}$						
	 Non-crowded area V>30m³ 	Public buildings		$\sqrt{\sqrt{1}}$		\checkmark			
3	 Required building above the tank V<20m³ 				$\sqrt{\sqrt{1}}$	\checkmark			
	 Required building above the tank V>20m³ 					$\sqrt{\sqrt{1}}$			
$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$ Strongly recommended option			d option	V Rec	quired cap	acity		

Introduction Methodology & Results Conclusions & Recommendations 4 - Potential sites & techniques

Water harvesting system

- What do we need?
 - Tow systems for RW and other sources means, more
 - Area and budget are required
 - Efforts for cleaning and maintenance
- Rain water quality might not be worse than other alternatives

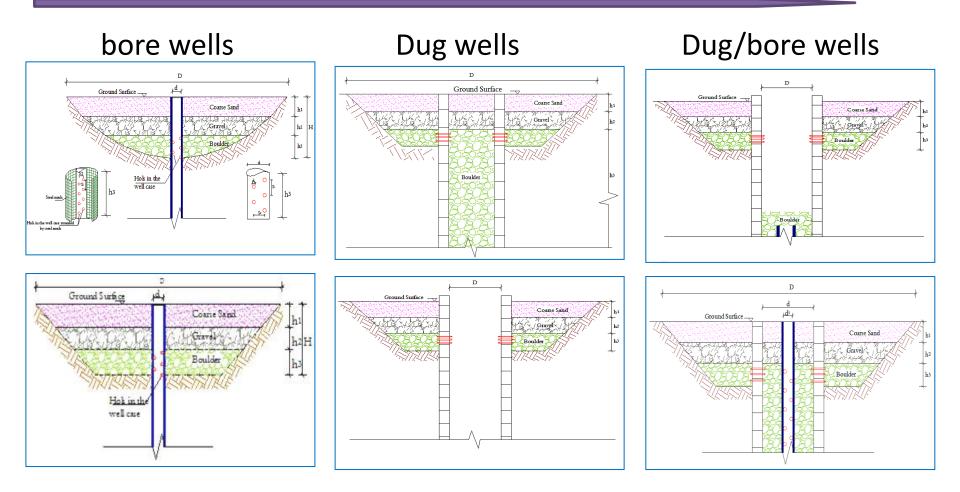
Tank size and control

Tank size

• There are several computer-based programs for calculating tank size that connected to more than one source (RainCycle)

(Roebuck and Ashley, 2006)

Tank control


- Besides float valve, control valve is required
- Overflow pipe

Introduction Methodology & Results Conclusions & Recommendations 4 - Potential sites & techniques

Other possibilities of rainwater harvesting

- Dried-up wells
- Cesspits
- Dug wells at households
- Ponds
- Check dams

Dried-up wells

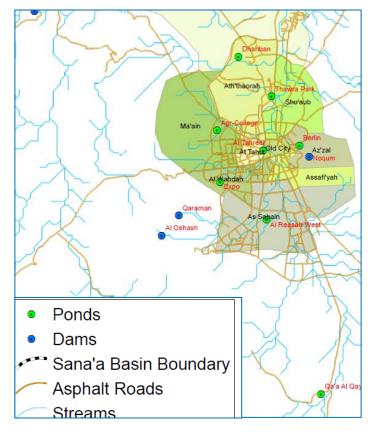
Introduction Methodology & Results Conclusions & Recommendations 5 - Other possibilities of RWH

Cesspits & dug wells

- 40% of the city is covered by swage system the rest are using cesspits
- Suggested filters can be used for cesspits
- Many dug wells in the city are still exist

Introduction Methodology & Results Conclusions & Recommendations 5 - Other possibilities of RWH

Ponds


- Ponds
- Al-Sailah Pavement

Introduction

Methodology & Results Conclusions & Recommendations
 5 - Other possibilities of RWH

Proposed Ponds and Dams

Source: (Hydrosult, 2010)

Introduction Methodology & Results Conclusions & Recommendations 5 - Other possibilities of RWH

Check dams...successful stories

- Benefits of check dams are already felt by communities
 - Bahman check dams and Beryan gravity dam
- Such check dams are advisable to be in the southern part of the basin to increase groundwater recharges and reduce the

floods

Introduction Methodology & Results Conclusions & Recommendations 5 - Other possibilities of RWH

Conclusion and **R**ecommendations

Conclusion

- RTRWH is feasible and applicable
- RTRWH contribute in a good portion of ground water saving
 - 26% of the whole domestic uses
- Harvested rainwater can be used for all uses (filtering before drinking)
- Harvested rainwater seems to be more reliable than water from other unknown and infrequently tested sources

Recommendations

- More attention to rainwater harvesting should be paid in water management policies and strategies
- Further quality studies
- The start should be at government and public buildings
- Laws and regulations
- House water systems should be conditioned for RTRWH

Recommendations

- Cooperation between government, private sector, and urban households is required
- Besides brick cement and ferrocement tanks, Ghala basket, cement jars and concrete ring tanks are also other cheap techniques practiced in Kenya and required further applicability studies

