GROUNDWATER RESOURCES INVESTIGATION

IN THE AMRAN VALLEY Y, YEMEN ARAB REPUBLIC

By G. C. Tibbitts, Jr., and James Aubel

U.S. Geological Survey

Open-File Report 80-774

Prepared in cooperation with the Yemen Arab Republic under the auspices of the United States Agency for International Development

Reston, Virginia

1980

UNITE STATES DEPARTMENT OF THE INTERIOR

CBCIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY
H. William Menard, Director

For additional information wite to:

Chief, Office of International Hydrology
U.S. Geological Survey

470 National Center
Reston, VA 22092

CONTENTS

Page
Geographic names. v
Conversion factors. vi
Abstract. 1
Introduction. 3
Location and extent of area 4
Well numbering system. 4
Economic and cultural features 4
Previous investigations. 7
Acknowledgments. 7
Geography 8
Climatic features 9
Agriculture and industry 12
Irsigation 13
Geohydrology. 13
Structure 16
Water-bearing characteristics 17
Ground water occurrence. 18
History of exploratory drilling 20
Drilling methods. 21
Geophysics 23
Aquifer tests 24
Chemical quality of water 39
Recharge and water use 42
Conclusions 47
Recommendations 48
References 50

ILLUSTRATIONS

Page
Plate 1. Map showing well locations, ground water contours and geology in the Amrän Basin, Yemen Arab Republic . (in pocket)
Figure 1. Map of Yemen Arab Republic showing study area 5
2. Aquifer test plot, Al Jubi site 26
3. Aquifer test plot, Warehouse site 27
4. Aquifer test plot, Raydah South site. 28
5. Aquifer test plot, Raydah Middle site 30
6. Observation well pumping-cycle data, Raydah Middle site 31
7. Observation well recovery-cycle data, Raydah Middle site. 32
8. Pumped-well recovery-cycle data, Raydah Midale site 33
9. Distance-drawdown curve, Al Jubi site 35
10. Distance-drawdown curve, Warehouse site 36
11. Distance-drawdown curve, Raydah South site. 37
12. Distance-drawdown curve, Raydah Middle site 38
13. Diagram showing classification of water in 'Amrān Valley, Yemen Arab Republic with respect to suitability for irrigation 40
14. Piper diagram showing chemical character of water, Amrän Valley, Yemen Arab Republic. 41
15. Ground-water fluctuations at Raydah, Mohsein and Iraqi. and monthly rainfall 1975-1977, Amrän Valley, Yemen Arab Republic. 44
16. Ground-water fluctuations at Al Jubi, Menjidah and Bir as sirar, and monthly rainfall 1975-1977, 'Amrän Valley, Yemen Arab Republic. 45
17. Ground-water fluctuations at A1 Jannät, and monthly rainfall 1975-1977, Amrān Valley, Yemen Arab Republic. 46
Page
Table 1. Annual rainfall in millimeters, 'Amrān Basin and Sana 10
2. Month of highest rainfall and, when measured daily, the number of storms during month, Amrān Basin. 10
3. Monthly maximum, minimum and mean temperature in degrees Celsius for 1976 at the GTZ Station, 'Amrän Basin. 11
4. Generalized stratigraphic section for Amrän Basin and nearby areas, Yemen Arab Republic 14
5. Well inventory data, Amrān Valley 54
6. Driller's logs, Amrän Valley 97
7. Chemical analyses of ground water in 'Amrā̀n Valley. 122

GEDGRAPHIC NAMES

Most geographic names in this report have been verified in the United States Board on Geographic Names (BGN) Official Standard Names Gazetteer, Yemen Arab Republic, 1976, as approved by the Board on Geographic Names, Geographic Names Division, Defense Mapping Agency, Hydrologic/Topographic Center, Washington, D.C. 20315. Other processing of names, compilation, review, editing, for cartographic and report use was done in the Office of International Hydrology, National Center, Reston, Virginia 22092.

Spellings of standard names in the report are approved by BGN. Names preceded by an asterisk (*) are not approved by BGN. Previous reports used a transliteration of the native name, that is, Al Mukhā, San ${ }^{〔} \bar{a}$? ${ }^{2}$ and Ar Rab al Khali, in preference to the conventional name spelling approved by BGN. In this report, the conventional name is used, followed by the native name shown in parenthesis, for example, Mocha (A1 Mukhā), Sana (Sुan 'ā') and Rub al Khāl \bar{i} (Ar Rab ${ }^{\text {al }}$ al Khāl $\overline{\mathrm{i}}$).

CONVERSION FACTORS

The following factors may be used to convert the International System (SI) of Units published herein to inch-pound units.

SI Unit	Multiply by $=$	Inch-Pound Unit
millimeter (man)	0.0394	inch (in)
meter (m)	3.281	feet (ft)
kilometer (km)	. 6215	mile (mi)
square hectometer (hm^{2}) (hectare)	2.471	acres
square kilometer (km ${ }^{2}$)	. 3861	square mile (mi ${ }^{2}$)
cubic meter (m^{3})	8.107×10^{-4}	acre-feet(acre-ft)
```cubic meter per year per square kilqmeter (m}/\textrm{mr})/\mp@subsup{\textrm{km}}{}{2```	. 0021	```acre-feet per year per square mile (acre-ft/yr)/mi'2```
cubiç meter per second ( $\mathrm{m}^{3} / \mathrm{s}$ )	35.31	$\begin{aligned} & \text { cubic feet per second } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$
liter per second (L/s)	15.85	gallons per minute (gal/min)
square meter per day ( $m^{2} d$ ) (transmissivity)	10.76	square feet per day ( $f t^{2} / \mathrm{d}$ )
$\begin{aligned} & \text { square meter/per day }\left(m^{2} / d\right) \\ & \text { degree Celsius }\left(C^{0}\right) \end{aligned}$	80.5 $1.8\left(^{\circ} \mathrm{C}\right)+32$	$\begin{aligned} & \text { gallons per day per foot } \\ & \text { (gpd/ft) } \\ & \text { degree Farenheit ( }{ }^{\circ} \text { F) } \end{aligned}$

Page
Table 1. Annual rainfall in millimeters, 'Amrän Basin and Sana ..... 10
2. Month of highest rainfall and, when measured daily, the number of storms during month, Amrãn Basin. ..... 10
3. Monthly maximum, minimum and mean temperature in degrees Celsius for 1976 at the GTZ Station, Amrän Basin. . . ..... 11
4. Generalized stratigraphic section for 'Amrān Basin and nearby areas, Yemen Arab Republic ..... 14
5. Well inventory data, Amrän Valley ..... 54
6. Driller's logs, Amrän Valley ..... 97
7. Chemical analyses of ground water in Amran Valley. ..... 122

## GBOGRAPHIC NAMES

Most geographic names in this report have been verified in the United States Board on Geographic Names (BGN) Official Standard Names Gazetteer, Yemen Arab Republic, 1976, as approved by the Board on Geographic Names, Geographic Names Division, Defense Mapping Agency, Hydrologic/Topographic Center, Washington, D.C. 20315. Other processing of names, compilation, review, editing, for cartographic and report use was done in the office of International Hydrology, National Center, Reston, Virginia 22092.

Spellings of standard names in the report are approved by BGN. Names preceded by an asterisk (*) are not approved by BGN. previous reports used a transliteration of the native name, that is, Al Mukhā, Sुan 'ä́, and Ar Rab' al Khali, in preference to the conventional name spelling approved by BGN. In this report, the conventional name is used, followed by the native name, shown in parenthesis, for example, Mocha (Al Mukhä), Sana (Şan ${ }^{6}{ }^{7}{ }^{7}$ ) and Rub ${ }^{6}$ al Khälī (Ar Rab' al Khālīi).

# GROUND-WATER RESOURCES INVESTIGATION <br> IN THE AMRAN VALLEX, YEMEN ARAB REPUBLIC 

By G. C. Tibbitts, Jr., and James Aubel


#### Abstract

This report, based largely on intermittent field work from November 1974 to March 1978, describes the results of hydrologic studies and exploratory drilling to evaluate the water-bearing properties of the unconsolidated alluvial sediments and associated rocks in the semi-arid'Amrän Basin in north central Yemen Arab Republic. The investigation and test drilling were undertaken jointly by the Government of Yemen Arab Republic and the U.S. Agency for International Development with technical assistance from the U.S. Geological Survey and the American Peace Corps.

The ÁArā̈n Valley extends approximately 45 kilometers northeast to southwest and averages 6 kilometers in width. The area described in the report covers about 800 square kilometers and lies at an altitude ranging from 2,100 to 2,300 meters above sea level ( pl . 1 , inset B). Most of the population of 64,777 lives in villages and small towns and subsists on locally grown crops and livestock products. small-scale farming, based on irrigation from wells and, in part, on rainfall, is the chief occupation of the area. Dug and drilled wells equipped with pumps provide much of the water for irrigation.

Wells drilled in the unconsolidated alluvial fill of the south-central part of the valley have the highest yields. Wells penetrating the limestone and volcanic rocks occurring elsewhere in the report àrea generally have low to no yield except when located in fracture zones. Basalt flows occur interbedded with the wadi alluvium at several depths. A major basalt flow outcropping northeast of Raydah restricts ground-water flow to the northern part of the basin. Rocks cropping out in the Amrān valley range in age from hate Jurassic to Holocene.

Observation well and rain-gage networks were established in the basin in 1974; since that time selected wells have been measured periodically. Water levels in most wells throughout the area have declined during the period of record. In the area of heaviest pumpage, near the town of Amran, water levels declined at a rate of 2 meters per year during a period of above average rainfall. The water resources of the area are currently (1978) overexploited and water conservation measures should be instituted. Such measures should include limiting pumping for irrigation, prohibiting new well construction and deeping of existing wells, and lining of irrigation canals to prevent loss of water through leakage. pumping tests conducted during the investigation show the ground water occurs under semi-confined leaky-aquifer conditions in the valley fill.


The chemical quality of the water from the unconfined and semi-confined aquifers in the area is generally good and suitable with few exceptions, for domestic supply, livestock support, industry, and irrigation.

## INTRODUCTION

This report sumarizes data collected during studies of the groundwater potential and the geohydrology of the Amrän Valley, Yemen Arab Republic. Field work was done intermittently from November 1974 to March 1978. The report, in part, also presents conclusions regarding the occurrence, quantity, and chemical quality of ground-water in the alluvium, volcanics, and limestone bedrock of the area of investigation. Accompanying tabulations present the basic data on which the report is founded.

The present investigation of the Amran Valley area, a principal element of the Water Survey of North Yemen project, has been sponsored jointly by the Yemen Arab Republic Ministry of Agriculture and the Ministry of Econonly through the Minerals and Petroleum Authority (MPA), and the United States Agency for International Development (USAID). Technical advisors were assigned to the project by the United States Geological Survey (USGS). The American Peace Corps assisted by detailing a geologist assigned to the Ministry of Public Works (MPW), Department of Rural Water.

The Government of the Yemen Arab Republic has begun the development of its internal capability to appraise, develop and manage the nation's water resources. Although appraisal of the ground-water potential at a given site was often an integral part of the development project, heretofore such appraisals were largely the work of expatriate consulting firms.

Over the period of this project, howeyer, Yemeni personnel were assigned to the geohydrologic investigation of the Amrān Valley as well as to water investigations elsewhere in the Republic. Many aspects of training in the multi-disciplinary science of hydrology are best accomplished by working on actual field investigations. Accordingly, personnel from the MPA, and Yemeni nationals hired by USAID were assigned units of field and laboratory work involving well inventories, hydrogeologic mapping, exploratory drilling, geophysical well logging, aquifer testing, sample descriptions utilizing a microscope, observation well monitoring, and the collection of meteorological data. On becoming proficient in one skill, personnel were rotated to other tasks for additional training. Also, 5 geology students and 2 general science students from Sana (San' ${ }^{\prime}$ ) University were employed by the project during summer vacations for a total of 6 to 9 months each of on-the-job training in the previously mentioned aspects of work.

In addition to the on-the-job training, two participants were sent to the United states for further training. One field assistant studied basic drilling techniques for 3 months at the J. Sargent Reynolds school in Richmond, Virginia. One geophysical technician spent 7 months with USGS personnel at several locations in the United States. This training consisted of a 2 -month course in hydrologic techniques and 5 months of training in field and office procedures.

As ground-water resources of the 'Amrān valley were poorly defined, the major effort in the investigation was necessarily directed towards test drilling and aquifer testing. During the project field operations, 2 rotary drill rigs with down-the-hole air hammer capability were assigned by the MPW to accomplish the test drilling.

The area of investigation referred to as the 'Amrän valley lies entirely within the Şana ${ }^{〔} \bar{a}$, Province or Governerate, and consists of parts of the Thuläa, Arhab, and 'Iyäl. Surayh districts in the San ©́' Subprovince and all or parts of the 'Amränn, As sawd, As sữdah, Jabal Iyàl Yazĩd, Raydah, and Dhī Bīn districts in the 'Amrān subprovince (pl. 1). The area is located in the north-central part of the Republic between $15^{\circ} 30^{\prime}$ and $15^{\circ} 55^{\prime}$ North and $43^{\circ} \frac{45^{\prime}}{}$ and $44^{\circ} 15^{\prime}$ East and covers approximately 800 square kilometers ( $\mathrm{km}^{2}$ ) (fig. 1). The area extends about 45 km northeast to southwest and averages 6 km in width. The northeasterly limit is the border of the Dhï Bīn District and the southwesterly extent is the limestone escarpment in the Thulā District. The districts of Amrãn, Jabal Iyăl Yazīd, and Raydah comprise the major part of the study area. The names Qä́ al Bawn al Rabīr and Qāa $^{\prime}$ at Hamudah are commonly used on maps to designate the Amrăn Valley..

## Well Numbering System

The test holes drilled by the project are identified by name on plate 1 and numbered serially at each test site. Wells from the well inventory table 5 are grouped by area on the map beginning in the qa' at Hamuah area in the northwest part of Amran Basin and the numbering proceeds serially by groups to the southern end of the valley.

## Economic and Cultural Features

'Amrān, the largest town in the Amrän valley, has a population of $3,298^{1}$ and Raydah, the second largest town, has a population of 1,637. The numerous remaining villages in the area all have less than 1,500 inhabitants each. The total population for the three districts of 'Amrän, Jabal 'Iyāl Yazid and Raydah is 64,777. The all weather road extending from Sana, the capital, to the Ringdom of Saudi Arabia border in the North, connects CAmrān and Raydah. Another all weather road under construction will connect Amrān to the Tinamah coastal plain to the west via the village of fyajjah. The valley floor is criss-crossed with numerous tracks that become impassable at times during the rainy season. Rains, however, are intermittent and most tracks are closed for no more than 3 or 4 days at a time. The two towns of Amrän and Raydah are major trade centers for thousands of people living on the higher plateaus that surround the valley and there are a number of very steep and difficult trails connecting these towns to the top of the escarpment. The highway from the Ringdom of Saudi Arabia is heavily used as a major truck route to bring imported goods to the Iemen Arab Republic, and therefore, many items of foreign manufacture are available in the Amrän valley, some of which cannot be found elsewhere in the country.

[^0]

Figure l-Map of Yemen Arab Republic showing study area.

Figure 1 shows boundaries and names of provinces in the Yemen Arab Republic. Also shown are the report area and the district boundaries within that area. This area is snown at larger scale on plate 1 as an inset index map in order to show the names of districts and other administrative areas.

Administrative subdivisions of the report area, and index map gazetteer

Report name	BGN approved standard name
Province of Sana	Liwa' San ' ${ }^{\text {a }}$
Subprovince of Amran	Qaḑa' ${ }^{\text {' Amrän }}$
District of Amran	nv, Nähiyat Amrān
District of As Sawd	nv, Nählyat As Sawd
District of As Sudah	nv, Nähiyat As Südah
District of Jabal Iyal Yazid	nv, Nählyat Jabal Iyăl Yazid
District of Raydah	$n v$, Nähiyat Raydah
District of Dhi Bin	nv, Nähiyat Dhi Bin
Subprovince of Sana	Qadā' S San'a ${ }^{\text {a }}$
District of Thula	nv, Nâhiyat Thulä (BGN, Thilà)
District of Iyal Surayh	nv, Nähtyat 'Iyāl Surayh
District of Arhab	nv, Nähiyat Arhab

Note.-Information source: Yemen Arab Republic, 1977, Preliminary Report No. 5, Databank of Yemen's Population and Housing Census, 1975: Zurich, Switzerland. This publication follows the BGN/PCGN Systen. Administrative names qualified above as not verified (nv), are not listed in the current (1976) BGN gazetteer of the Yemen Arab Republic. Underlined names are BGN short form designations.

New building is intense along the highway, and the towns of Raydah and Amrān are growing rapidly. In a year's time, four petrol stations were being built over a distance of about 15 km . Agricultural development and general growth in the more rural areas away from the highway, appear to be decreasing, at least temporarily, owing to the lack of farm laborers. The problem of labor shortage is common to all of the Yemen Arab Repliblic since the higher wages available in Kingdom of Saudi Arabia attract much of the working population. According to the previously cited 1975 zensus figures, 26.5 percent of the population emigrated from four of the districts in the area to seek work elsewhere. The only major government facility in the area is a large military camp located at the southwest edge of Amrān town. Future development plans include a cement factory near 'Amrän town. The West German Agency for Technical Cooperation (GTZ) program for the area includes a 2 -year feasibility study of rural development in agriculture, secondary roads, and village water supplies.

## Previous Investigations

The basis for planning the present investigation was provided by James R. Jones, USGS, and Stanley M. Remington, USAID, who completed a reconnaissance study in early 1973 and proposed the present ground-water investigation of the Amran valley. Previous ground-water investigations in the Yemen Arab Republic have, for the most part, been limited to spot studies of specific areas by consultants or foreign donors although some of these studies have been rather extensive. It is believed, however, that the Amrān Valley study is the first such investigation undertaken by the YAR using appreciable Yemeni technical personnel and equipment.

A preliminary report on the geohydrology of the 'Amrān Basin, based largely on data supplied by the project, was prepared for the GT\% by the Federal Institute for Geoscience and Natural Resources in 1978.

## Acknowledgments

This report ultimately results from the combined efforts of all the personnel, past and present, assigned to the Water Survey of North Yemen Project. It would be difficult to equate the relative contribution of such diverse, yet interdependent, activities as well drilling, geophysical logging, chemical analysis of water and well inventory, to name but a few.

Messrs. Jamal Ahmed Zaifullah, Geophysical Technician, Ahmed Mohammed Seif Al Doubly, Field Assistant, and Ghalib Kaid Mohammed, Camp Manager, assisted during most of the investigation. Many private individuals and government officials also assisted during the course of the investigation. Special thanks are due to Mr. Ali Gaber Alawi, Director of the Minerals and Petroleum Authority, and Mr. Abdul Bari Salah, Director of the Department of Rural Water, both officials of the Yemen Arab Republic.

Messrs. Abdulla Ath Thari and Mahommud Al-Oudeni, geologists from the MPA were assigned to the project in 1976. Their professional assistance is appreciated.

Edward Sammel, Stavros S. Papadopulos, and E. V. Giusti, USGS, assisted in analysis of the aquifer test data.

## GEOGRAPHY

The Yemen Arab Republic is divided into three major physiographic provinces. From west to east, these provinces are the coastal plain, the mountainous region, and the interior plateau. The Amrann Valley lies entirely within the interior plateau physiographic province at altitudes ranging between 2,100 and 2,300 meters (m) (pl. 1, insert B). The valley is bordered on all but the southern side by steep limestone escarpments ascending from 400 to 800 m above the valley floor. The main axis of the valley is oriented southwest-northeast and is approximately 45 km in length.

The valley floor is, for the most part, flat and undissected. The alluvial deposits within the valley consist of windblown silt, loam, sand and pea gravels. At some locations, extensive lag gravel deposits predominate. At other scattered locations, large midden mounds (ancient rubbish heaps), likely dating from the Himyarite civilization, occur as low symmetrical hills. These midden mounds contain deposits of red clay pottery shards. A particularly prominent midden is located southeast of Raydah near the base of the escarpment.

Surface drainage is northeast towards the wäd $\overline{\mathrm{i}}$ al Khärid (fig. 1) that, in turn, drains into the Wadi Jawf. Although there are no perennial streams in the area, surface inflow enters the valley from the south via the Wädï Dayän following seasonal rainstorms. Often intense rainstorms also contribute to sheet flooding which delivers large quantities of water and accompanying erosional debris to the valley floor. The writers observed a localized rainstorm during August 1975 that fell on the escarpment above Al Gusair in the north end of the valley. Although the storm lasted only about 20 minutes, the escarpment face in the immediate vicinity was quickly flooded and runoff continued for about 2 hours after the rainfall ceased. The resulting temporary rivulets flooded a $6 \mathrm{~km}^{2}$ area south of Al Gusair on the Qä́at famudah (Hamudah Plain). The entire process from the start of the storm to the time when the basin ceased filling, took about $21 / 2$ hours.

The valley narrows to a width of approximately 1 km east of the town of Raydah where a recent basalt flow largely blocks the drainage. Otherwise, the intermontane valley ranges between 5 and 10 km in width. Smaller tributary valleys, oriented east-west, branch eastward from the main valley at Amrān town; the wädī Qumämah, and north of Raydah; the gá at Hamudah.
of the total $800 \mathrm{~km}^{2}$ of land in the farän basin, only an estimated $200 \mathrm{~km}^{2}$ are farmed. This is due, in part, to the fact that, in the center of the valley, the soils consist largely of sand and do not retain irrigation water. Locally, and for more limited areas, such conditions as midden mounds and exposure of bedrock also make farming impractical. The intermittent flow from desert rainstorms is channeled to farm fields. At times during the rainy season, much of the valley is subject to flooding although these floods are usually of limited areal extent.

The area described in this report has semi-arid climate marked by sporadic and scanty rainfall, abundant sunshine, violent wind movement, wide diurnal and seasonal range in temperature, and low relative humidity except near the irrigated farm areas. The higher relative humidity is localized in and around areas of natural and irrigated vegetation as is characteristic of a semi-arid climate and results, in part, from evaporation from free water surfaces.

From the short period of available record, annual rainfall within the Amrān basin ranges betwen 200 and 500 millimeters (mm). Storms are usually short, intense, and often localized. In the 'Amrān valley, rain gages as close as 10 km apart have recorded differences in precipitation of as much as 50 mm on the same day. Since much of the agriculture in the area is dependent, in part, on supplemental irrigation from wells, this variability in rainfall chiefly affects the availability of vegetation for grazing. A year without any rainfall in an area, however, may mean that farmers will not attempt to start a major crop such as wheat. Sorghum, on the other hand, can be raised on rainfall alone in the wet years.

Rainstorms mainly occur in August and September and, in some years, continue into October. This period constitutes the principal rainy season during most years. There is a shorter rainfall season beginning in early May and continuing into June. Sporadic storms may occur at other times, most likely in December and January, but these months, like the remainder of the year, can be completely dry.

The project operated 4 rain gages in the 'Amrän Basin during the period of investigation. These gages, which continue to be part of the hydrologic network for the Republic, are located, south to north, at Thilă, Al Jannat (Jannat), Menjidah (Menjeda), and Raydah. In addition, German Technical Cooperation (GTZ) maintains a rain gage located between Amrãn and Raydah approximately 200 m east of the main road near Jub as Sulfa (coordinates: $\left.44^{\circ} 00^{\circ} 30^{\prime \prime} \mathrm{E}, 15^{\circ} 40^{\prime} 00^{\prime} \mathrm{N}\right)$. The gage at Thila recorded 490 mm of precipitation during 1976 whereas the gage at Raydah registered only 167 mm ; reflecting the localized pattern of desert rainfall. Annual precipitation at Sana south of the valley, ranged from a high of 388 mm in 1975 to a low of 202 man in 1977. Rainfall data for the 5 Amran Basin stations and Sana are shown in table 1. A longer record for Sana however, shows an average annual precipitation of 300 mm . This figure is likely applicable to the Amrãn area.

TABLE 1.--Annual rainfall, in millimeters, 'Amrăn Basin and Sana

Station	1975	1976	1977
Thilä	255	490	NA
Al Jannät (Jannat)	362	250	305
Amrān	NA	283	NA
Menjiăh	304	290	188
Raydah	388	167	202
Sana	392	225	202

The notion of a short and a long rainy season each year describes conditions recorded regionally over the longer term. Records for individual rain gages do not necessarily follow the same pattern in the short-term. For example, the heaviest monthly precipitation occured during March at the Al Jannät stations in 1976 when 4 storms occurred during the month. Records from the other 'Amrän stations, however, tend to reflect the regional rainfall pattern even in the short-term. The greatest number of storms recorded during a single month for the period of record was twelve. This frequency was recorded three times; at Raydah during August 1975 and at Thila during both May and August 1976. The establishment of a field headquarters in the Amrã Valley made possible daily checking of the rain gages for at least part of the time on some of the stations, during the period of investigation. Table 2 shows the month of highest rainfall and the number of storms during the month, during times when it is known that the gages were serviced daily. Personnel limitations precluded daily servicing of the gages at other times and, accordingly, when the gages were not serviced daily it is not known whether the measurements record precipitation for a single or several storms during a given month.

Station	1975		1976		1977	
	Month	Storms	Month	Storms	Month	Storms
Thila	July	NA	May	12	NA	NA
Al Jannät	August	3	March	4	October	NA
Menjidah	August	9	May	NA	May	3
Raydah	August	12	May	NA	May	NA

Temperature observations made during 1976 at the German Technical Cooperation station are summarized in table 3. The extremes recorded during that year were $28.4^{\circ} \mathrm{C}$ in June and $-0.4^{\circ} \mathrm{C}$ in January. The annual
average temperature was $14.6^{\circ} \mathrm{C}$. The 'Amrän area was cooler by 1 to 2 degrees throughout the year than Sana. In the spring and summer, hot, sand-laden winds, usually of short duration, parch man, animal and plants alike.

So far as is known, no other meterological data were collected in the 'Amrän Basin during the period of investigation.

TABLE 3 - Monthly maximum, minimum and mean temperatures in degrees Celsius for 1976 at the GTZ Station Amrān Basin

Month	Maximum	Minimum	Mean
Jan.	22.0	-0.4	10.8
Feb.	23.4	3.4	13.4
Mar.	24.3	7.3	15.8
Apr.	23.9	7.2	15.6
May	25.2	10.0	17.6
June	28.4	8.2	18.3
July	26.7	11.0	18.9
Aug.	26.1	9.6	17.9
Sept.	24.0	5.7	14.9
Oct.	21.4	4.1	12.3
Nov.	17.7	2.2	10.0
Dec.	19.3	0.9	9.2
Year	28.4	-0.4	14.6

Small-scale farming, based on irrigation and, in part, on rainfall is the chief occupation of the area, although the grazing and sale of livestock also provides agriculture income. Dug and drilled wells equipped with pumps provide much of the water for irrigation. Agricultural activity is on the decline in the area, however, due to the migration of farm labor seeking higher wages in the Ringdom of Saudi Arabia and elsewhere. Consequently, care of the family farm is often left to the women and children who remain behind. The decline of agricultural activity is shown by the general deterioration of terraced farm land surrounding the valley. Once breached by runoff, these terraces require immediate repair to prevent destruction of the enclosed farm land by erosion. At the present time (1978), there is neither sufficient labor nor sufficient financial incentive to effect repairs and considerable terraced farm land is being destroyed.

Alfalfa is the most important local forage crop and is an important source of farm income. Wheat and sorghum are the most important cultivated grains in the area. A variety of garden vegetables are raised also, chief among them being potatoes, onjons, tomatoes, melons, peppers and beans. A few grape vineyards are scattered throughout the eastern part of the area. "Qat" a small tree producing a leaf which when chewed produces the effect of several cups of coffee, is grown on some of the terraced fields. Sale of Qat production in excess of family use can be very profitable.

Livestock, chiefly sheep and goats, and livestock products are major sources of agricultural income in the area. Animals graze in the surrounding highlands in the winter and are fed supplemental fodder, usually alfalfa, during the rest of the year. Cattle and camels are not numerous, but most farms have at least one for plowing or possibly milking. Some poultry and rabbits are raised, mostly for local consumption.

Water for irrigation is a limiting factor in agricultural production in the Amrān Basin. Although many areas are unfit for farming owing to the type of soil, given adequate irrigation many other areas now unused could be cultivated. Further, lack of technical knowledge and skills in water conservation, irrigation practices, soil drainage, and farming methods prevent better agricultural production.

Cottage industries are virtually unknown in the area except for some basketweaving and pottery making for family use. Almost all utensils and tools are purchased from outside sources. Small scale quarrying of limestone and basalt blocks for building is a minor industry as is the open pit mining of sand for cement. There are no large industries in the area, but a cement factory is planned for a location near Amrän town. The water requirement for a cement factory is considerable and carefuly consideration should be given to the priority of water allotment. It is unlikely that the industrial, agricultural, municipal, and domestic water requirements can be met simultaneously from the ground water resource.

Before the widespread introduction of turbine pumps in the early $1960^{\prime}$ s, irrigation from wells was limited to small plots of alfalfa and vegetables. Water was raised from dug wells by the means of animal power. After the introduction of turbine pumps, irrigation increased and field size expanded. Water levels in the dug wells, however, began to drop and deepening wells either by digging or with a drill rig became the rule. In the central part of the valley the bottom of the water table is commonly marked by a basalt bed which usually precludes further deepening by hand. These basalt beds are interfingered with alluvial sediments that are water bearing both above and below the basalt. Where basalt was encountered, a drilling rig became a necessity if the well was to be deepened further.

The irrigation method used in the 'Amrān Basin involves flooding the field and allowing the water to stand and infiltrate. Irrigation water is spread to fields by way of unlined ditches; leakage and consequent waste of water can be considerable. In sandy soil, losses from unlined irrigation ditches can range up to 70 percent although in clayey loams, the waste factor is nearer 10 percent. There are several general practices that are important to the overall effective utilization of irrigation water. Chief among these is the use of lined ditches to prevent the waste of water by leakage. The construction of lined canals, however, is usually beyond the financial resources of individual farmers in the 'Amrän area. Sprinkler, trickle and perhaps other irrigation methods undoubtedly would increase irrigation effectiveness and conserve water.

Field infiltration rates range from 1.5 mim per hour for clayey tilled soil to 150 mm per hour for sandy undisturbed area (personal communication, GTZ). There are an estimated 2,000 hectares of land irrigated by either channeling, direct rainfall to fields or from wells, in the Amrän Basin. Much of the arable land is suitable for mechanized farming and larger scale irrigation. A limiting factor, however, is the availability of ground water.

## GEOHYDROLOGY

Rocks in the Yemen Arab Republic range in age from Precambrian to Holocene (pl. 1 and table 4). Precambrian rocks, primarily granite gneiss and mica schist, are exposed in deeply incised wädis 10 to 20 km west of the 'Amrän Valley. The Kohlan Series of Early Jurassic age unconformably overlies the Precambrian rocks at these same locations. The Kohlan Series in this area ranges upwards to 150 m in thickness and consists of massive white sandstone interbedded with thinner beds of conglomerate and violet fine-grained sandstone. The oldest formation cropping out in the Amran Basin, however, is the Amran series of Late Jurassic age. The contact between the Kohlan and Amran Series, though not exposed in the 'Amrän Basin, is gradational with no break in sedimentation.

The Amran Series crops out over a large part of the northern third of the Yemen Arab Republic extending northwards from Shibām, 20 km southsouthwest of 'Amrän town to Sa'Dah. In the area bound roughly by latitudes

TABLE 4.--Generalized stratigraphic section for 'Amrān Basin and nearby areas, Yemen Arab Republic.

QUATERNARY
Alluvial deposits
ioess, loam, silt, clay, sand, gravel, and boulder erratics. principal aquifer in area where significant thickness of unconsoliaated permeable sediments occur at depth. Very fine and surficial deposits not water bearing. Thickness exceeds 300 m at some locations. Interbedded with basalt layers.

## Younger volcanics

Dark grey to black basalts. Not proven to be aquifer in report area. Essentially unexplored; 5 dry test holes drilled in lava flow northeast of Raydah. Ground water occures in fracture zones, tubes, and along bedding plains in volcanic rocks. In Sana area wells penetrating similar rocks can have large yields. Thickness unknown, but exceeds 200 m as proven by test drilling. Occurs on the southern and eastern flanks of report area.

## TERTIARY

Medj-Zir Series
Predominantly fine to coarse grained crossbedded continental sandstone with lenses of conglomerate and gravel and interbedded shale; upper part rich in hematite. Cannot be separated from underlying Tawilah Group on the basis of stratigraphic relationship. Fair to good aquifer. Outcrops southwest of Amrän Valley in Thila-Shibăm area. Thickness to 150 m at Shibäm.

## CRETACEOUS

Tawilah Group
Predominantly coarse grained crossbedded continental sandstone interbedded with shale and clay stones; cut by numerous basalt dikes. Good aquifer especially in the fracture zones. Wells tapping this formation supply part of municipal water for Sana city. Outcrops southwest of Amrān Valley in Thilā-Shibäm area. Thickness to 350 m at Shibăm.

## UPPER JURASSIC

## Amran Series

Fossiliferous, massive to fine bedded, limestone of shallow water origin with intercalated sandy layers; shale interbedded; major solution structures rare in report area. Generally, poor aquifer except in fracture zones. Cut by basalt dikes. Forms eastern, western and northern flanks of Amrän Valley. Thickness to 800 m in Wadi Attäf.

Kohlan Series
Massive white sandstone with interbedded conglomerate beds; contact with overlying Amran Series is gradational with no break in sedimentation. Water-bearing properties unknown, but potentially good. Occurs west of report area in steep cliffs ranging up to 150 m in thickness.

## PRECAMBRIAN

## Basement

Predominantly granite gneiss and mica schist exposed in deeply incised wādis west of report area. poor aquifer, limited amounts of ground water occur in fracture and fault zones.
$15^{\circ} 30^{\prime}$ and $16^{\circ} 55^{\prime} \mathrm{N}$ and longitudes $43^{\circ} 20^{\prime}$ and $45^{\circ} 45^{\prime} \mathrm{E}$, rocks of the Amran Series predominate although interspersed with occasional volcanic plugs and flows, along with scattered granite plugs, stocks and plutons, as well as more extensive alluvial and volcanic deposits. The flanks of the famous Himyarite dam at $\mathrm{Ma}^{\prime} \mathrm{rib}, 110 \mathrm{~km}$ east of Sana and one of the seven wonders of the ancient world, are cut into limestone of the Amran series and the massive headworks are also constructed of the same material. The Amran Series formerly covered the entire area of the Yemen Arab Republic and beyond, with parts of the Tihămah possibly excepted. post Jurassic erosion largely removed the covering limestone mantle from most of the eastern and southern two thirds of the country. Outliers of the Amran Series occur, however, in the Tihamah, in the northwest and southwest as horsts uplifted through the Yemen Volcanics, to the east in the area of Şäfir and in the Rub al Khali, and south along the Wadi Bana near the frontier with the People's Democratic Republic of Yemen.

The Amran Series is everywhere calcareous although facies change with location. In the Amran Basin, the formation consists of fossiliferous, yellowish-white limestone of shallow water origin; an origin evidenced by both the fossil assemblage and the occurrence of intercalated sandy layers. The bedding is horizontal to subhorizontal. The flanks of the Amrän Valley are formed by alternately interbedded layers of massive cliffforming limestone, sandy fine-bedded limestone and shale that, in turn, weathers to form less abrupt slopes. The limestone is faulted and oross faulted and heavily jointed, but caves, sink holes or smaller solution structures are rare. The thickness of the Amran Series underlying the alluvium of the valley floor is unknown, but the thickness exposed by the cliffs on the valley flanks ranges between 400 and 600 m and exceeds 800 m in the Wadi Attäf, to the northeast of the valley.

To the southwest of the 'Amrän Basin, sediments of the Tawilah Group and Medj-Zir Series form elevated plateaus that are visible from the southern end of the valley. Although the Tawilah group appears bare of fossils, it is considered Cretaceous in age because of geometric position. Both formations consist of coarse, crossbedded, white sandstone with conglomerates, gravels and interbedded shale. The Medj-Zir Series is of probable Tertiary
age. The volcanic formations exposed in the report area are primarily dark-grey to black basalt flows of Tertiary to Holocene age. The very dark basalt flows occuring northeast of, and to a very limited extent, within the valley were extruded during historical times. The historical age of these darker flows is assumed because of their similarity to flows in the Hamdän volcanic field north of sana. At the Hamdän location, lava flows of similar lithomlogic character and color have inundated the works of man. Numerous basalt cones and craters occur east of and parallel to the CAmrän Valley.

Beds of basalt also occur interfingered at depth within the alluvium filling the valley. The interbedded basalt layers likely result from a succession of lava flows at different intervals as the valley filled with sediments rather than intrusion as sills. This is evidenced by the fact that the basalt beds are persistent over distance within the alluvium. Further, wells penetrating the alluvial sediments may encounter multiple beds of basalt interspersed at different depths in the alluvial section. These basalt beds tend to confine water in the underlying sand and gravel and act, at least in part, aquitards.

The alluvial deposits filling the 'Amrän valley constitute the principal aquifer system in the area. Together with the interbedded basalt layers, the alluvium has a thickness in excess of 300 m at some locations near the valley center. These alluvial deposits consists of loess, loam, silt, clay, sand, and gravel with occasional limestone boulder erratics. The sandy material, in all likelihood, was eroded and transported from the Tawilah-Medj-zir escarpment to the southwest. Limestone gravels, which are often waterbearing at depth, are derived from the Amran serils surrounding the valley. The lithology of the unconsolidated sedimentary section reflects periods of successive flooding, ponding, and probably also periods of desiccation. Coarser material was deposited in the valley trough by floods during times of higher rainfall when water ponded in the valley. The occurrence of loess in the upper part of the alluvial section indicates a period of desiccation when these wind-morne sediments could accumulate.

Alluvial sediments are thickest along the main axis of the valley and feather out against the flanking limestone and basalt escarpments. Mobile sand dunes occur at random throughout the Amrän Valley, but are most evident in the $Q^{\prime \prime}$ at Hamudah area.

## Structure

The 'Amrān Valley is formed by a northeast-southwest tending graben structure (pl. 1, inset A) thought to have been formed contemporaneously with the Red Sea rifting that started in the oligocene. Approximately 45 km to the northeast the graben changes direction to east northeastwest southwest and changes again, in the wäd Attäf, to an east-west orientation. North of Raydah the graben is cut by major cross faults oriented north northwest-south southeast that likely account for the escarpment forming the northern boundary of the Qat 6 at Hamudah plain. parallel faults on both sides of the valley form a series of steps on the valley flanks as successive blocks of bedrock slipped into the depression. The apparent throw of these faults exists within the graben structure and accounts,
in part, for the variation in depth to bed rock at different locations beneath the sedimentary valley fill. Small horsts resulting from the same tectonic action that caused the faulting arise in the graben floor and some are seen in outcrop above land surface within the valley proper. The outcrop of Amran limestone occurring as an outlier 1 km east of Raydah at the site of the Kharif 66 test hole is a typical example of an exposed horst. The availability of ground water in the alluvial sediments forming the graben fill is partly controlled by local subsurface structural conditions. When horst blocks rise to near or above land surface, water-bearing deposits may be thin to non-existent. Faults and variations in the thickness of alluvial fill due to subsurface tectonics in some instances can account for the large difference in yield between closely spaced wells.

## Water-Bearing Characteristics

The coarse sediments interbedded in the alluvial fill of the Amran Valley contain the principal ground-water resources in the report area. Locally, where structural conditions are favorable, the Amran limestone can be productive. Likewise, in favorable structural situations, the volcanics have the potential of yielding worthwhile quantities of water to wells as these rocks do elsewhere in the Yemen Arab Republic. Limited test drilling in the report area, however, failed to discover any usable quantities of water in the basalts. Admittedly, the test drilling in the volcanics was limited to a restricted area northeast of Raydah and, therefore, the negative results obtained are not conclusive for other areas of volcanic rocks in the report area. In one hole near Raydah, perched water was encountered, but quickly depleted by pumping. Other test holes at this same general location were dry even at depths as much as 60 m below the level of the water table in the nearby alluvium.

Other geologic formations mentioned in this report, although important to the overall understanding of the areal geohydrology, are not locally potential water sources since they neither crop out nor are known to occur at depth within the area. The Precambrian outcrops in the deeply incised wädis to the west of the 'Amrān Valley are characteristically a poor aquifer everywhere in the Yemen Arab Republic and ground water occurs, for the most part, only in fracture zones. The Kohlan serils overlying the Precambrian is largely unexplored, but has the potential of being a high yielding aquifer since it is composed primarily of losely cemented sandstone. In the outcrop area west of the 'Amrän Valley, however, the Rohlan Series shows little potential for yielding water to wells. This is owing to the fact that the formation occurs in cliffs resting on exposed basement rocks precluding the possibility that water could be retained within the formation even when available from recharge.

The sandstones of the Tawilah Group, although not present in the report area, are the best aquifers in the Yemen Arab Republic and wells penetrating this formation have high yields where considerable thicknesses of the formation occur below the water table. The Medj-Zir Series consists of coarse sandstone and is, therefore, a potentially high yielding aquifer. Although relatively unexplored, large yields could be expected from this formation at locations where significant thickness exists.

At the onset of the project, test drilling efforts were directed at obtaining water supplies for villages situated on the slopes of the highlands flanking the Arrăn Valley. Consequently, well sites were located on the limestone outcrops at the base of the escarpment or in the narrow valleys reentrant to the escarpment. The majority of these wells penetrated Amran limestone throughout most of their depth. The second test well at Menjidah yielded 14.5 liters per second ( $L / S$ ) by airlift and the test well at Al Hajz yielded $6 \mathrm{~L} / \mathrm{S}$, also by airlift. The upper 43 m of the Menjidah weil penetrated 8 m of gravel and 35 m of basalt before encountering Anran limestone and the limestone was overlain by 37 m of limestone breccia at the Al Hajz site. With the exception of these two wells, other wells constructed in the Amran limestone near the flanking escarpments had poor to no yield.

Yields of dug and drilled wells in the wad $\vec{i}$ alluvium where located at distances from the escarpments, on the other hand, consistently range between 3 and $18 \mathrm{~L} / \mathrm{s}$. Many of the dug wells, however, have been deepened several times. This reflects, in part, an effort to follow a declining water table and, in part, an effort to meet increasing demand for irrigation water. Many of the dug wells first bottomed on basalt which, in effect, marked the bottom of the unconfined water table. When water levels in the overlying unconsolidated aquifer declined, efforts to deepen the well by digging into and through the basalt were often attempted. Owing to the hardness of the volcanic rock, efforts to excavate the basalt with hand tools were, as a rule, unsuccessful. This work was further complicated by the necessity of keeping the hole dry by pumping as the work proceeded. Accordingly, well owners usually hired a local contractor equipped with a cable-tool drilling rig to penetrate the basalt and the underlying alluvium.

Water in the sediments under the basalt occurs under confined or partially confined conditions and water levels in wells penetrating one or more basalt layers may be higher than the local water table. Generally, when the dug wells are deepened, the yields increase. This is also the case in dug wells in the alluvium where basalt is not encountered.

Deepening drilled wells is practical only when the well has been initially constructed without a metal bail plug at the bottom of the casing string. When the well is left open at the bottom it may be possible later to drill it deeper. If part of the well is uncased, initially producing water from the open hole through the aquifer section, there is a serious danger of collapse during subsequent deepening. Wells that are screened in the aquifer and equipped with a metal bail plug sealing the bottom of the casing string generally cannot be successfully deepened. Any attempt: to drill through the bail plug will likely lead to separation of the well casing up the hole and destruction of the well. When practical, deepening of selected drilled wells should produce increased yield. of course, the benefit of deepening any well in the Amrān Valley is limited by the aquifer thickness at the well site.

## Ground Water Occurrence

The ultimate source of fresh ground water is precipitation and, with the exception of some desert regions, the ground water reservoir is periodically
recharged by rainfall or infiltration from streams through pore spaces in the soil to the zone of saturation, the upper surface of which is the water table. Water-table conditions exist where the aquifer is not confined by overlying impervious strata. Unconfined water occurs in the permeable sand and gravel resting on top of the first relatively impermeable bed, either clay or basalt, at depths ranging from 6 to 50 m below land surface in the alluvial fill of the Amrãn valley. The water in the zone of saturation, sometimes referred to as "phreatic water," moves by gravity flow from sources or points of recharge to areas of discharge. This migration, coupled with evapotranspiration and artificial withdrawal by pumping plus recharge by precipitation, accounts for fluctuation of water levels in wells tapping the water table. Natural discharge and withdrawal by pumping together with migration down slope results in lowering the water table, especially during the dry season. Water levels recover during the rainy season, reflecting recharge to the ground-water body and also the effect of decreased pumping when precipitation substitutes for irrigation from wells.

Water in the alluvium occurs under semi-confined conditions and, at some locations, possibly under confined conditions. When ground water is confined or semi-confined, it is often termed artesian. Although the popular concept of "artesian" connotes water from a well flowing above land surface, in the hydraulic context "artesian" refers to ground water under conditions producing hydrostatic head. Artesian conditions occur where the water moving down-gradient through permeable water-bearing strata passes beneath impermeable strata that form a confining bed. If the materials beneath the water-bearing strata are also impermeable, water acquires a hydrostatic head related to the vertical distance between the altitude of land surface at the point of confinement and the slope of the potentiometric surface, and the bottom of the confining bed at the point of discharge.

The lenticular character of the alluvial aquifer indicates that water, for the most part, occurs in these beds under semi-confined conditions. Further, analysis of the four pumping tests conducted by the project in the Amrän Valley show leaky aquifer conditions. A leaky aquifer is defined as a semi-confined aquifer whose confining bed will conduct significant quantities of water into or out of the aquifer, but the term is somewhat of a misnomer. Although water does leave the aquifer, it is the confining bed or aquitard that is leaky. The aquifers in the alluvium filling the Amran valley below the partially confining strata of either clay or basalt are in hydraulic continuity with other water-bearing strata occurring either above or below the producing aquifer.

The hydraulic gradient of the water table in the 'Ararän Valley reflects the surface drainage and slopes to the northeast towards the Wädi Attäf and a mutual discharge area. The natural hydraulic gradient is locally altered where pumping wells are concentrated as is the case around "Anrän town, Raydah, and in the eastern Qä at Hamudah. The gradient of the water table is steepest near the valley flanks and flattens towards the center of the valley where the alluvial sediments are the thickest. Dug wells along the margin of the valley range in depth from 10 m to over 70 m in the eastern gáat Hamudah. Generally, irrigation wells in the center of the valley are over 50 m in depth and may range up to 100 m where deepened with a drilling rig. Depths to water are greatest, on the other hand,
near the flanks of the main valley and occur at shallower depths below land surface towards the center of the valley.

Wet-season and some all-weather springs and seeps issue, at places, from the escarpments flanking the valley as well as from fractures in the limestone bedrock in wädis reentrant to the main valley.

## HISTORY OF EXPLORATORY DRILLING

During most of the test drilling program, two Ingersoll-Rand T4 drilling rigs were assigned to the project. These rigs are designed primarily for drilling in hard consolidated rocks, such as volcanics, utilizing compressed air and down-the-hole hamers. Although originally equipped with a small mud pump for conversion to the direct rotary drilling method, these rigs proved unsuited for drilling in alluvium and limestone where lost circulation problems were common. Accordingly, it was necessary to equip these rigs with large capacity auxiliary mud pump in order successfully to complete many of the test holes. The drilling difficulties encountered are best illustrated by the drilling sequence at the middle Raydah site. A successful observation well was completed at this site in March of 1976. Subsequent attempts nearby to construct production wells over a period of several months ended in abandoned holes owing to lost circulation problems. The production hole that was eventually completed in February 1978 had been spudded in the preceding September. Equipment breakdown admittedly contributed to the time necessary to complete this well, but again, circulation problems were the major cause of delay.

The initial phase of the 'Amrān Valley ground-water investigation provided for exploratory drilling to obtain village water supplies. First efforts, beginning in June 1974, centered in the volcanic area 4 km northeast of Raydah and were directed at finding drinking water for the village of Kharif. Five test holes in the basalt bedrock of this area proved, for all practical purposes, dry although one test encountered limited amounts of perched water. It was necessary eventually to move onto the alluvial plain south of the volcanics to obtain water for Kharif. At the new location, the first hole was reported dry and the second produced $2.5 \mathrm{~L} / \mathrm{s}$ by airlift which, however, was sufficient for the village when pumped continously into reservoir storage. Initially samples of the well cuttings were not always collected and some well logs are incomplete for wells completed during the early test drilling efforts.

Subsequent efforts to provide village water supplies centered on Al Hajz southwest of 'Amrān town and Al Gusair in the northern end of the valley. The well at Al Hajz yielded $6 \mathrm{~L} / \mathrm{s}$. Two holes drilled at Al Gusair location near the head of a north to south draining wadi were dry. The third hole, located downstream in a wider section of the wadi, yielded $4 \mathrm{~L} / \mathrm{s}$. Although this well was a welcome addition to the village water supply, it was obvious that larger yields sufficient for irrigation of crops would be obtained only in the thicker sections of alluvium along the main valley axis.

Among the first efforts to explore conditions away from the flanking escarpments included the 'Amrän town and the nearby A1 Jannät sites. Owing
to poor design, the 'Amrãn town well proved disappointing although the geophysical $\log$ indicated the presence of water-bearing strata. yield by airlift of the Al Jannăt well was only $\frac{1}{2} \mathrm{~L} / \mathrm{s}$. An earlier effort at Al Jubi northeast of Amrān town and the first project test hole near the axis of the southern part of the Amrān valley, yielded $3 \mathrm{~L} / \mathrm{s}$ by airlift. A test hole at Al Sheikh approximately in the center of the northern part of the valley was dry. The area where yield from wells would be sufficient for irrigation accordingly was narrowed to the central part of the valley south of the volcanic intrusion and flows that outcrop east of Raydah.

The production well at Menjidah yielded $14.5 \mathrm{~L} / \mathrm{s}$ and was the first hole drilled near the center of the southern valley axis. This hole, however, penetrated Amran limestone throughout much of its depth and consequently, did not explore the alluvial section as intended. The relatively high yield from this well as contrasted to yield from other wells constructed in the limestone is probably due to location at the mouth of a small wadi reentrant to the main valley. This tributary wadi was probably formed by erosion along a fracture zone that could, in turn transmit water to wells. South to north, the Warehouse, Raydah South, and Raydah Middle groups of wells were located to test and evaluate the hydraulics of the alluvial aquifers. As was the case with Menjidah, one or more observation wells were constructed at these sites along with the production well. Drilling, developing, and conducting aquifer tests at these sites continued into the spring of 1978.

## DRILLING METHODS

A complete description of well-drilling methods is beyond the scope of this report. It is desirable, however, to describe briefly methods used in the investigation and by others constructing wells in the area, particularly with reference to inherent drilling problems. Wells in the area are drilled by the percussion (cable-tool), direct rotary, and air rotary (down-the-hole hammer) methods. Further, dug wells are constructed with hand tools and, when basalt is encountered, offen blasted downwards with explosives.

The percussion (cable-tool) methods of drilling involves raising and dropping a heavy string of drill tools consiting of a bit, drill stem and drilling jars attached to a steel cable. The cable passes from a collecting reel over a pulley wheel at the top of the derrick before connecting to the tool string. The string of tools is activated up and down by means of a pitman arm and the resulting blows crush material (strata) struck by the bit. The crushed material is removed from the hole with a bailer. The percussion method often produces a hole of several different diameters, with the largest diameter at the surface. When it becomes difficult to drive the larger tubing the diameter of the hole is reduced and drilling is continued with a smaller bit. Several different diameters of well tubing each smaller than the preceeding one may be necessary to complete a well.

Percussion drilling is particularly well suited to very coarse sediments and is also suited to very hard rocks such as basalt. When it becomes necessary to deepen a dug well bottomed on a basalt layer interfingered
with wadi alluvium, the well owner often hires a local driller with a percussion rig to deepen the well. The rig is positioned on a platform constructed over the open dug well and a length of pipe is then secured to the bottom of the hole to act as a tool guide. In theory, the equipment should be able to penetrate the basalt at a rate of roughly a meter per 8 hour shift. In practice, the rig may remain over the well for months. Antiquated equipment in part accounts for the delay, but inexperience in cable-tool drilling techniques is a more important factor. When drilling very hard rocks by the percussion method, it is necessary to keep the drill bit to gage. A percussion bit can be brought to gage by heating on a forge and reshaping with a sledge hamer or by resurfacing with an electric welding machine. The welding procedure puts a harder surface on the face of the bit and is the preferred method. Local percussion drilling contractors, however, are seldom equipped with a welding machine. Much of the time lost in deepening dug wells through the basalt beds is due to stuck tool strings resulting from the bit being out of gage causing the hole to be out of round or out of gage.

The direct rotary method of drilling involves rotating a string of drill tools with attached bit in an open hole. Simultaneously, drilling fluid is circulated from a mud pit by a pump down the hollow rods and out the openings in the bit to return back up the open hole to the mud pit. The returning column of drilling fluid carries material cut by the bit to land surface and thence to the mud pit near the well head. Drilling fluid consists of water mixed with local clay and often other material used to increase its density (weight). Bentonite, a volcanic clay that swells when wetted, is the preferred material used to make up the drilling mud. Both rock roller bits and drag bits are used in rotary drilling. Rock roller bits are best for drilling in sand, gravel, and hard rock; drag bits perform best in silt and clay.

Most of the test wells constructed as a part of this investigation were drilled by the rotary method. Owing to problems with lost circulation, it was necessary to equip the drilling rigs with large capacity auxiliary mud pump. Even with the large capacity pumps, however, it was not always possible to maintain circulation in zones of high permeability in the alluvium, a condition that sometimes resulted in the collapse and eventual abandonment of the well. In general, it was found that zones of lost circulation could be penetrated if sufficient drilling fluid was available on the first try. This often meant making up an extra pit of mud as a standby before drilling the very permeable zones. When zones of lost circulation were penetrated without additional drilling fluid immediately available, the hole invariably collapsed and subsequent efforts to restore circulation to continue drilling were, for the most part, unsuccessful.

Air rotary drilling involves much the same principle as direct rotary drilling except that cuttings are removed by a colunn of compressed air mixed with foam rather than by a mud column. Compressed air and foam circulate down the hollow rods and the air activates the down-the-hole hamer bit at the bottom of the tool string. The hammer bit vibrates up and down in short strokes in an action similar to a jack hammer, the result of which can fracture and penetrate the hardest rocks. Short-toothed rock roller bits and button bits can also be used with the air rotary method to drill hard rocks.

Although the air rotary method can be used to drill unconsolidated alluvium when these deposits are essentially dry, the method is unsuitable for very permeable sands and gravels containing abundant water as is the case at some locations in the project area. The rigs used to drill the test holes in the Amrän valley had both direct and air rotary capability. Often it was desirable to drill the interbedded basalt strata with the air rotary method and use the direct rotary method to drill the alluvial section of the well.

## GEOPHYSICS


#### Abstract

Geophysical well logs were run on many of the test holes during the investigation utilizing project procured equipment. This equipment was capable of recording the resistivity, spontaneous potential, natural gamma rays, and the density (gamma gamma) of formations penetrated by the test wells. In addition, the logger was also capable of continously measuring the diameter of an open borehole by means of a caliper logging attachment. The resistivity and spontaneous potential were measured simultaneously utilizing a single down-the-hole tool (sonde) and single recording module. To record other formation characteristics it was necessary to change the down-the-hole tools and record through separate module systems.

Possibly the most useful logs for ground-water exploration are the resistivity and spontaneous potential, both of which must be run in a open uncased hole. The resistivity log measures the resistivity of rocks penetrated by the borehole under direct application of an electric current or an induced electric current. The spontaneous potential log measures the natural potentials developed between borehole fluid and surrounding rock material. Used together these measurements identify water-bearing zones, rock types, and the quality of water in permeable formations throughout the depth of the open hole. Resistivity and spontaneous potential logs are particularly useful in delineating aquifers in unconsolidated sediments and consequently, proved an important tool in designing wells in the 'Amrān Valley.


Natural gamma logs measure the natural-gamma radiation of rocks penetrated by a borehole. The gamma gama (density) log utilizes a source of radiation within the sonde and records gamna radiation from this source after it is backscattered and attenuated within the borehole and surrounding rocks. Natural gamma and gamma gamma logs may be run both in open holes and in cased holes.

All of the described logging systems are useful in geologic correlation between wells and in locating water-bearing zones penetrated by a single borehole. This geophysical capability was particularly important to the Amran Valley study because of the inexperience of the Yemeni drilling crews. If information was not collected during drilling operations or was lost or unrecorded, it was often possible to retrieve that information by geophysical logging procedures.

Copies of the down-the-hole geophysical logs run by the investigation project are on file with the Hydrology Section of the Ministry of Petroleum and Minerals.

Two major hydraulic characteristics that affect the development of an aquifer are its ability to transmit water and its capacity to yield water from storage. These properties, which affect the water levels or artesian pressure and yield of wells, are quantified in terms of transmis* sivity (a rate of movement) and storage (a dimensionless coefficient) and were first defined by Theis (Ferris and others, 1962, pp. 72-78). In 1972, these terms were redefined by Lohman and others. When these characteristics are known for an aquifer or part of an aquifer, it is possible to forecast approximate water level or artesian pressure trends at different rates of withdrawal from producing wells.

To establish the transmissivity values and storage coefficients of aquifers in the Amrän Valley, four aquifer tests were made at selected sites. In addition, a third formation constant had to be determined to evaluate aquifer hydraulics since the semi-confining beds overlying or underlying the aquifer transmitted water upwards or downwards by leakage. This constant is called leakance, or the leakage coefficient as defined by Hantush and Jacob (1955) and Hantush (1956).

Some difficulty was encountered in performing the aquifer tests. The problems, were, for the most part, related to newly purchased pumping equipment. The direct drive turbine pumps used by the drilling section were unavailable for use in aquifer testing and, as a consequence, an electrical submersible pump with generator was purchased. This new equipment proved difficult to regulate and pumping rates, therefore, were somewhat erratic. Results of these tests, however, are judged to be within acceptable limits when the data are matched to the Hantush-Jacob leaky-aquifer model. Data from these tests do not match the Theis curve except for some of the early responses. Semi-log plots and recovery data, therefore, can be misleading and accordingly, all plots consist of logarithmic values of drawdown versus the parameter time divided by well radius squared (log a versus $\log t / r^{2}$ ). Obtained values of the transmissivity are about $1 / 2$ to $2 / 3$ those determined from semi-log plots whereas storage coefficients are higher than those obtained from semi-log plots.

Al Jubi Site-An aquifer test was performed at the Al Jubi site on September 5, 1977. The aquifer at this site consists of mixed volcanic and limestone gravel and was screened with slotted pipe between 85 and 104 m . The well was also gravel packed. The punping rate varied somewhat, but averaged $12 \mathrm{~L} / \mathrm{s}$ ( $190 \mathrm{gal} / \mathrm{min}$ ). Figure 2 shows the drawdown curve for the Al Jubi test. Data prior to 6 minutes are erratic and something unexplained happened to drawdown between 60 and 90 minutes. Matching the data betyeen 6 and 20 minutes, and 90 and 450 minutes, transmissivity, $T \underline{4} 454 \mathrm{~m} / \mathrm{d}$ $(36,000 \mathrm{gpd} / \mathrm{ft})$ and the storage coefficient, $\mathrm{s} \leftrightarrows 2 \times 10^{-3}$. Apparent leakage is a significant . 026 .

Warehouse Site--The aquifer test conducted at the Warehouse site between July 10 and 15 , 1977, utilized a pumping well screened with a commerical continuous slot screen. The 6 m length of screen was set at the bottom of a 23 m sand bed and extended into the underlying basalt bed. This test was badly flawed by a 40 percent decrease in pumping rate during the test (fig. 3). Assuming a harmonic mean pumping rate of $2 \mathrm{~L} / \mathrm{s}$ (130
$\mathrm{gal} / \mathrm{min}), T \cong 75 \mathrm{~m}^{2} / \mathrm{d}(6,000 \mathrm{gpd} / \mathrm{ft})$ and $\mathrm{s} \cong 1 \times 10^{-3}$. Departure of the drawdown from the Theis curve is partly due to the decreasing pumping rate, but may be partly due to a leaky aquifer. Confidence in $T$ and $S$ is high, but the leakance of .011 is somewhat questionable.

Raydah South Site--An aquifer test was made at the Raydah South site (fig. 4) August 21 to 24, 1977, utilizing a 3-well complex. The production and one of the observation wells were screened with slotted pipe and gravel packed between 49 m and 61 m . Both of these wells were finished in gravel. The second observation well was screened with a comercial 40 slot screen and gravel packed from 53 m to 59 m . Apparently the third well tapped a fractured basalt rather than the gravel bed penetrated by the other two wells accounting, in part, for the difference in response between the observation wells. The production well was pumped at $9.5 \mathrm{~L} / \mathrm{s}$ ( 152 gal/min).

Analysis of data from observation well number 1 indicates a $T \cong 248 \mathrm{~m}^{2} / \mathrm{d}$ $(20,000 \mathrm{gpd} / \mathrm{ft})$ and $\mathrm{s} \cong 2 \times 10^{-3}$. The data from the second observation well show $T \cong 372 \mathrm{~m}^{2} / \mathrm{d}\left(30,000\right.$ gpa/ft) and $\mathrm{s} 5 \times 10^{-4}$ which is consistent with the fractured rock hypothesis. Apparent leakance is $9.34 \times 10^{-3}$. Data from the pumped well cannot be analyzed with any confidence owing to difficulty with the airline measurements.




Raydah Middle Site-The aquifer test conducted at the Raydah Middle site between February 6 and 9, 1978, utilized a pumping well screened between 168 and 183 m with 15 m of slotted screen. The well was pumped at 9.7 $\mathrm{L} / \mathrm{s}$ ( $154 \mathrm{gal} / \mathrm{min}$ ) with a drawdown of 2.15 m . The aquifer at this site consists of a fractured basalt. Figure 5 shows the test curve for this site and analysis of the data shows a $T \subseteq 860 \mathrm{~m}^{2} / \mathrm{d}(69,500 \mathrm{gpd} / \mathrm{ft})$ an $s \cong 9.8 \times 10^{-5}$, and a leakage coefficient of $2.5 \times 10^{-3}$ per day. In addition, well loss was estimated to be in the order of 1 meter. Attempts to analyze the pumping and recovery cycle from the observation well separately yielded inconsistent results and therefore, these data were combined and used in the type-curve method of analysis. Fluctuations in the observed data near the end of the test may result from barometric effects.

Figure 6, shows a semi-log plot of the recovery cycle data from the pumped well. It can be shown that for small $r / B$, such as would be the case in the pumped well, that the early part of the semi-log data plot should be a straight line having a slope of:

Where: $s=$ drawdown, in meters
$\mathbf{s}^{*}=$ recovery, in meters

$$
\frac{\Delta s}{\text { cycle }}=\frac{2.3 Q}{4 \pi T}
$$

$Q=$ well discharge, in cubic meters per day
$T$ = aquifer transmissivity, in square meters per day

Hantush (1956) shows that for small $r / B$ and large $u$, for the early time interval, the values of $W(u, r / B)$ are the same as Theis' $W$ ( $u$ ) explaining why the equation above is valid (symbol definition given below). The transmissivity determined in the analysis of the early part of the recovery data should fall on a straight line that has a slope s*/cycle $=0.177$ m . In this case, well losses are assumed to be constant with time and would not affect the slope. Such a line drawn in figure 8 shows the value of transmissivity is reasonable.

The observed steady-state drawdown or recovery in the pumped well is in the order of 2.1 to 2.3 meters. The theoretical drawdown or recovery (fig. 7), without well losses would depend on effective well radius. The inset on figure 8 shows the theoretical drawdown or recovery for effective radii ranging from 0.1 to 0.5 meters. Assuming that the effective radius of the well is in this range, well losses would range from 0.75 to 1.20 meters.




The pumping tests carried out at four sites in the 'Amrān valley provided the necessary hydrogeologic information for computing rates of drawdowns for varying levels of ground water development.

All the data plots of figures $9,10,11,12$, as well as the lithologic information obtained from well drillers indicated that the aquifers of the Amrän Valley are leaky and receive substantial amounts of water from the overlying aquifers when stressed.

The equation used to compute potential drawdown for various levels of pumpage is that of Hantush and Jacob (1955; see p. 320-324 of Freeze and Cherry, 1979). This equation can be written as:

$$
s=.08 \frac{Q}{T} W(u, r / B)
$$

where $s=$ drawdown in meters, (m)
$Q=$ well discharge in cubic meters per day ( $\mathrm{m}^{3} / \mathrm{d}$ )
 $W(u, r / B)=$ well function for the leaky aquifer, a set of dimensionless numbers given in tables, for example Hantush (1956), as a function of $u$ and $r / B$ which in turn are given by:

$$
u=\frac{r^{2} s}{4 T t} \quad \text { and } \frac{r}{B}=r \sqrt{\frac{1}{T} \cdot \frac{k^{\prime}}{b^{\prime}}}
$$

where $r=$ radial distance from the well, in meters ( $m$ )
$\mathrm{B}=$ aquifer thickness in meters
$s=s t o r a g e$ coefficient of the aquifer, dimensionless
$t=t i m e$, in days (d) and $b^{\prime}=$ thickness in meters of the leaky aquifer

The graphs illustrating the rate of drawdown as a function of distance from the well and for various levels of pumpage are given in figures 9, 10,11 , and 12.

Although the initial computations were made for different time periods (such as 1 week and 50 years) the results indicated that time was not a significant factor for the levels of pumpage that were chosen (that is, steady-state conditions prevailed).

The pumpage levels used in the computations were in line with those used during the pumping tests and thus conform realistically to the existing field conditions at the sites.


Figure 9-Distance-drawdown curve for various levels of discharge, Al Jubi Site.


Figure 10--Distance-drawdown curve for various levels of discharge, Warehouse Site.



Figure l2--Distance-drawdown curve for various levels of discharge, Raydah Middle Site.

The chemical quality of water from the unconfined and semiconfined aquifers in the Amrãn Valley is generally good and is suitable, with few exceptions, for domestic supply, livestock, and irrigation. Analyses of water from 16 wells in the report area (table 7) show the ion concentrations are below the maximum limits suggested by the U.S. Public Health Service (1962) for drinking water. The water from aquifers in the report area is generally moderately hard, usually from 110 to 250 milligrams per liter ( $\mathrm{mg} / \mathrm{L}$ ) total hardness as CaCO3.

The water from the aquifers of the Amran Valley is suitable in chemical quality for irrigation on many types of soils. Most of the water analyses, when plotted on a classification diagram (fig. 13) indicate a low to very low sodium hazard except for 2 analyses which plot in the high salinity hazard range. The effect of the salinity hazard may be overcome by leaching cultivated soils with excess irrigation or naturally with rainfall. Most of the water is predominately a calcium-magnesium-bicarbonate type (fig. 14) except for water from the well drilled by USAID to supply the village of Al Hjaz 7 km southwest of Amrān town (\# 383). Water from A1 Hjaz well is a calcium-magnesium-sulfate type indicating that gypsum is present in the subsurface section. The bicarbonate ion concentration of the water sampled ranges from $130 \mathrm{mg} / \mathrm{L}$ to a relatively high $300 \mathrm{mg} / \mathrm{L}$.

The diagram for the classification of irrigation water (fig. 13) developed by the U.S. Salinity Laboratory of the Department of Agriculture (1954), is based on electrical conductivity in micromhos/cm (EC $\times 10^{6}$ ) and on the sodium-absorption ratio (SAR). Electrical conductivity is commonly used for indicating the total concentration of ionized constituents of a natural water and is closely related to the sum of the cations or anions as determined by chemical analysis. Conductivity is a measure of the salinity hazard of water for irrigation. SAR, used as a measure of the sodium hazard, is a calculated value in which the concentration of the ions involved are expressed in milliequivalents per liter ( $\mathrm{meq} / \mathrm{L}$ ) and is defined by the Salinity Laboratory as:


The classifications of irrigation water discussed above were designed primarily for use in arid regions, such as the Amrän Valley, where these classifications are directly applicable. Water classified as having a high salinity hazard can, however, be used occasionally on a supplemental basis with little danger to all but the most sensitive crops. Only two of the wells sampled (fig. 13) show water with a high salinity hazard and the remainder of the analyses show a medium salinity hazard. All of the analyses indicate a low sodium hazard.
SODIUM (ALKALI) HAZARD (S)


SALIN!TY HAZARD\{C;
 lemen Arab Republie wiub wespeat to wutsbility for trriestion.

EXPIANATION $0^{12}$
Chemical character plot with sample number. Number keyed to table 7 .


PERCENT OF TOTAL MILJEEEQUEVALENIS PER LITER
Figure 14--Piper diagram showing chemical character of water ${ }^{\text {E Amrän Valley, Yemen Arab Republic (After Piper, 1944). }}$

Conductivity was measured in the field for water from most of the wells inventoried during the investigation. These field conductivities ranged between 340 and 780 micromhos $/ \mathrm{cm}$ with the majority of the water tested having less than 750 micromhos/cm. Field measurements, therefore, show that most water from wells in the area have conductivities in the medium salinity hazard range.

Six of the water samples were analyzed for boron which is essential for the growth of all plants. Concentrations of boron are reported in micrograms per liter (UG/L in table 7) and over $33 \mathrm{UG} / \mathrm{L}$ boron would affect the growth of crops sensitive to that element. The concentrations of boron reported from the ground water of the Amrān Valley, however, pose no threat to crops.

## RECHARGE AND WATER USE

Currently, one of the more popular methods of evaluating the water resources of an area involves calculating the "water balance." Formulas vary in detail, but generally include adding yearly recharge by rainfall percolating downwards to the aquifer system to annual inflow of water from surrounding areas and subtracting the annual use of water and the annual evapotranspiration, plus outflow to arrive at a figure for the change in water storage within the aquifer system. Changes in storage are reflected in the rise or fall of water levels in wells throughout the study area. When all of the above factors are known, even within reasonable limits, a water balance can indeed be predictive of the water in storage in the aquifer system. When on the other hand, one or more of the hydraulic parameters are unknown or estimated, a less mathematical approach based more on reason is indicated.

For the 'Anaran valley it is known that water levels are declining during a period of above average rainfall; as much as 2 m per year in an area of heavy usage. Additionally, the principal aquifer system is continuous within a narrow graben structure bounded by precipitous limestone cliffs. The limestone in these cliffs is undoubtedly in hydraulic continuity where contiguous with the wädi alluvium. The Amran serils, however, is a poor aquifer regionally and the low yield seasonal springs issuing from the valley flanks are probably indictative of the small amount of water in transit through this formation. Consequently, recharge to the valley is in all likelihood largely restricted to a part of the limited rainfall and a part of the limited surface inflow. Topographic, structural, and geologic conditions are not very favorable to recharge and these constraints coupled with facts of low rainfall and the decline in water levels in wells leads to the inescapable conclusion that the aquifer system is currently being over produced and the water mined.

The annual pumpage from the Amrän valley, based on information obtained during the well inventory, is estimated to be $11 \times 10^{6} \mathrm{~m}^{3} /$ year of which 90 percent is extracted from the Al Bann Plain ( $\mathrm{Qa}^{6}$ al Bawn al Kabir) that forms the central and southern part of the valley. Naturally, this is also the area with the greatest decline in water levels in wells. other evidence indicating that water is being removed from storage is indicated by the progressive deepening of existing wells. As water levels and yields decline many existing wells are dug or drilled deeper in an effort to
maintain sufficient water for irrigation. Pumping costs, of course, increase and there is also a practical limit beyond which an existing well can be deepened and still expect to increase or maintain yield. Additionally, some of the shallow wells, for the most part near the valley flanks, have gone dry indicating overproduction of the water resources. It is apparent, therefore, that pumpage should be restricted and the drilling of new wells and the deepening of existing wells prohibited; most prudently as an inmediate measure. Current knowledge indicates that over the long term there is not sufficient ground water available in the Amran Valley to meet present demands. Projected future requirements which, among other things, include a cement factory would compete with existing use and contribute greatly to the rate of mining water from the aquifer.

Based on the well inventory, there are currently between 400 and 500 dug and drilled wells in the Amrān Valley. Approximately 45 new wells are constructed annually which is balanced somewhat by the fact that as many as 10 existing wells are abandoned each year. Many of the older wells have been deepened at least once and many several times. Approximately 80 percent of all wells are equipped with motor-driven pumps ranging in type from centrifugal to deep well turbines.

An observation well network was established in the area in 1974 by the USAID project and since that time selected wells have been measured periodically. Water levels in the area around Amrän town and at Al Jannat declined at a rate of 2 m per year from 1975 to 1978 . Elsewhere in the study area water levels declined at a more gradual rate generally averaging about 0.3 m per year. Everywhere, however, the regional trend is downard. Recharge is noticeable in 1975 following a heavy rainfall but not clearly indicated in other years. Figures 15,16 , and 17 developed by Wagner and Nash (1978) show water level fluctuations in 7 observation wells in the Amrän Valley as related to rainfall. It should be noted that rainfall was greater than normal during this $1975-77$ period.




1. The area where wells can be successfully developed for irrigation lies in the south-central part of the Amrän valley. Generally, the permeable alluvial sediments are thickest in that area and drilled or dug wells may penetrate one or more water-bearing beds at depth. Aquifers within the alluvial formation contain the principal water resource in the study area. The Amran limestone and the Quaternary volcanics yield significant quantitites of water to wells only where these rocks are tapped in fracture zones.
2. The alluvial aquifer system is currently (1978) being over-exploited and ground water is being mined. Water levels in wells are declining and discharge is in excess of recharge.
3. Analyses of four aquifer tests on drilled wells screened in the unconsolidated sediments and basalt constituting the valley fill show leaky aquifer characteristics.
4. The basalt flow northeast of Raydah acts to retard ground-water movement to the valley north of this flow. Wells north of this basalt flow generally have low yields and the valley fill may be essentially dry even at considerable depth.
5. The chemical quality of water from aquifers in the basin is generally good and suitable, with few exceptions, for domestic supply, livestock, industry and irrigation. As applied to irrigation of crops, the salinity hazard is medium and sodium hazard low for the great majority of the water tested. Boron, although present, does not constitute a hazard to agriculture in the concentrations encountered.
6. Enough data are not yet available to establish a meaningful water budget for the basin. Additional observation wells are required in the northeastern part of the valley and the observation well network needs to be expanded to include more wells in tributary wadis.
7. Current irrigation practices are inefficient with regard to water conservation. Alternatives to the open ditch and flooding methods of irrigation need to be researched and the results applied to local cropping procedures.

## RECOMMENDATIONS

1. The observation well and rain gage (monitoring) program established by the USAID project in the Amran Basin should be continued. Data obtained from the monitoring program will become more important, particularly as a management tool, as the ground-water resource is increasingly exploited. Although aquifer test data provide a basis for predicting effects of pumping on water levels, longmterm observations of water levels are more useful in defining regional water-level trends. This is particularly true relative to achieving the optimum utilization of the resource and balancing the natural and artificial discharge with recharge to the aquifer system.
2. Five to ten percent of the wells throughout the area should be reinventoried annually. This effort should be limited to wells other than the observation wells where data are already collected periodically. Such a reinventory would fill in possible gaps in the observation well network and may define problems that are not otherwise immediately obvious.
3. In view of the declining water levels, restrict the use of water from wells for irrigation. Considering the political and social mores extant in the area, probably the only possible way to limit pumpages is to prohibit drilling of new wells and the deepening of existing wells; even this strategy may be impossible to enforce. The prohibition should stay in effect until pumping levels stabilize; at which time the policy can be reviewed. It may then be possible to gradually increase pumpage, balancing discharge and recharge.
4. Drill a deep test well in the southern center of the Amran graben (pl. 1, inset A). The alluvium and interbedded basalt layers have not been completely penetrated by any of the test holes along the center axis of the valley. This well should be continued to a depth of at least 100 m into the underlying limestone bedrock. The hole should be logged geophysically and permeable zones tested as encountered. This would establish whether or not productive aquifers exist below the depths thus far tested. To obtain maximum information, this hole should be sitea solely on geohydrological considerations, avoiding any and all pressures to become a future water supply well. The upper section of the hole where characteristics are now known should be cemented off to preclude any leakage to or from overlying aquifers. Equipment should be on hand to take cores as indicated, both by the wire line and core barrel methods. This wili pe ar expensive test and the question of using or not using surface geophysicai methods will undoubtedly be consicared. If suitable surface geophysicai equipment is in country, the aditional expense would likely be weit justified. Tf, on the other hane, such equipment along with operating personnei must be contracted out-of-country, the expense of the geophysical investigation could approach the cost of the test weil.
5. Conduct isotope studies to determine the age of the water from wells. These studies shoula provide an odditional insight into the volume and mechanism of recharge.
6. Experiment with alternative methoda of applying irrigation water, especially those methods that conserve water as, for exampie, spray and drip itrigation. Reseazch simple and economicel methods of lining currently used ixrigation distribution ditches.
7. Decide priorities on water use. Obviously domestic, livestock, and municipal water have the highest priorities. This decision recognizes that the ground-water resource is not being replenished as rapialy as it is being used. Once this fact is recognized, industrial use and expended irrigation take second place.
8. Obtain data on ground water inflow to and outflow from the Amran Basin that is needed to establish a water balance. Data on inflow can likely be obtained by installing observation wells in wadis tributary to the Amran Basin. To obtain information on outflow, several observation wells should be installed in the northeastern end of the valley in order to observe water-level fluctuations near the area where ground water flows out of the basin.
9. Establish the elevation of measuring points of observation wells in relation to land surface and sea level by means of a leveling survey. The water-level contours in this report are based on an altimeter survey of measuring points and accordingly, show only the general trends of groundwater flow and hydraulic gradient. The water-level data will become much more useful when more precise measuring points for wells are established.

## REF ERENCES

Basse, Eliane, Karrenbury, Herbert, Lichman, J. P. Alloiteau, Jamesand LeFrance, J. P. 1954, Fossiles du jurassique superier et des gres de Nubie, de la region de Sanas' (Yemen): Soc. Geol. France Bull., ser. 6, v. 4, pp. 655-687.

Ferris, J. G., Knowles, D. B., Brown, R, H., and Stallman, R.W., 1962, Theory of aquifer tests: U.S. Geological Survey Water-Supply Paper 1536-E, p. 69-174.

Freeze, R. A., and Cherry, J. A., 1979, Groundwater: Englewood Cliffs, N.J., Prentice-Hall, 604 p.

Geukens, F., 1966, Geology of the Arabian Peninsula, Yemen: U.S. Geological Survey Professional Paper 560-B, 23 p., 17 figs., 1 table.

Grolier, M. J., and Overstreet, W. C., 1978, Geologic Map of the Yemen Arab Republic (Sana) U.S. Geological Survey Miscellaneous Investigation Series, Map I-1143B, map, scale 1:500,000.

Hantush, M. S., 1956, Analysis of data from pumping tests in leaky aquifers, American Geophysical Union Transactions, v.37, p. 702-714.

Hantush, M. S. and Jacob, C. E., 1955, Non-steady radial flow in an infinite leaky aquifer, American Geophysical Union Transactions, v.36, p. 95-100.

ITALCONSULT, 1973, Sana ${ }^{6} \overline{\mathrm{a}}$ ' basin ground water study, in water supply for Sana $\widetilde{s}$; and Hadeida: Rome, prepared for the World Health Organization as Executing Agency for the United Nations Development Programme by ITALCONSULT, UNDP Yem 570, WHO 3202.

Keys, W. S. and MacCary, L. M., Application of borehole geophysics to water-resources investigations: U.S. Geological Survey Tecniques of Water-Resources Investigations Book 2, ch. E-1, 126 p..

Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.

Lohman, S. W., and others, 1972, Definitions of selected ground-water terms-mevisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.

Maero, Eric, 1960, Bibliography of Yemen and notes on Mocha: Miami, Fla., University of Miami Press, 63 p.

Piper, A. M., 1944, A graphic procedure in the geochemical interpretation of water analyses: American Geophysical Union Mransactions, v. 25, p. 914-923.

Swiss Technical Cooperation Service, Berne, and the (Yemen) Central Planning Organization, 1977, vol. 5, Data bank of Yemen's Population and Housing Census 1975: 261 p.
U.S. Public Health Service, 1962, Drinking water standards, 1962; Public Health Service Publication 956, 61p.
U.S. Salinity Laboratory, Dept. of Agriculture, 1954, Diagnosis and improvement of saline and alkaline soils: Agriculture Handbook 60 , 160 p.

Wagner, W. and Nash, H. G., 1978, Preliminary appraisal of ground-water occurrence in the Amrän Valley, Yemen Arab Republic: Hanover, Germany, prepared for the German Agency of Technical Cooperation (GIZ), by the Federal Institute for Geosciences and Natural Resources, 71 p.

Tables 5-7

Well非: numbered serially by areas, but in no specific order within an area.
Location: hwy, Km72; means 72 Kilometers from Sana'a on the Sana'a - Sa'adah highway. Other directions are given from prominent landmarks.

Owner: Owner's name, and in parenthesis the name of the well.
Approximate Age: The date when the well was first completed, however, on many wells it is probably the date when first deepened;

$$
\begin{aligned}
\mathrm{V} \cdot \mathrm{old} & =\text { very old } \\
\text { d.m.x } & =\text { deepened many times } \\
\mathrm{d} \cdot \mathrm{~s} \cdot \mathrm{x} & =\text { deepened several times } \\
\text { d. } 4 \mathrm{x} & =\text { deepened four times } \\
\text { n.d. } & =\text { not deepened } \\
- & =\text { no report }
\end{aligned}
$$



Yield: given in liters/second.
Use: use of well; $D=$ domestic and number of persons using $A=$ agriculture-irrigation and number of square meters irrigated.

Aquifer: type of water bearing rock; $\begin{aligned} \text { all. } & =\text { alluvium } \\ 1 . s . & =\text { limestone } \\ \text { basalt } & =\text { volcanic rock, consolidated } \\ c a l . & =\text { calcrete }\end{aligned}$
Date of Inventory: the date when the well was inventoried, two dates, one in parenthesis, means that the well was inventoried twice; measurements made the second time are also in parenthesis.

Remarks: who drilled the well, pumpage, specific conductance, etc.; $S C=600$ @ 21.7 means The Specific Conductance in micromhos $/ \mathrm{cm}$ at $21.7^{\circ}$ Celsius.
WS: means Wet season, or rainy season
DS: means Dry season, or times without rains
P: means Pumpage, or general average of pumpage
$\mathrm{h} / \mathrm{d}, \mathrm{d} / \mathrm{w}, \mathrm{m} / \mathrm{y}$. means hours/day, days/week, months/year pumped
n.p. means not pumped

Water Sample See table 7 where sample location'shows well number;
lab ID given here

(ine	whation i OMFR	$\underset{\text { ADF: }}{\text { APPROKIMAE }}$	TYP:	Tomat. Merris cercers		$\begin{array}{r} \text { TYPF UF } \\ \text { PUETOR } \\ \text { NETHOBI } \\ \hline \end{array}$	$\begin{gathered} \text { YieLd } \\ (1 / s) \end{gathered}$	ESP.	AqCIFER	$\left\|\begin{array}{c}\text { date of } \\ \text { INVE: Tory }\end{array}\right\|$	RELu*s
1.		$\begin{array}{r} 1972 \\ \text { D. } \\ \hline 1 \end{array}$	Dug	74.4*	61.0*	т.	6.2		Sand	5 Nov. ${ }^{75}$	$\begin{aligned} & S C=600 @ 21.7^{\circ} \mathrm{C} \\ & W S=1.5 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 3 \mathrm{~m} / \mathrm{y} \\ & \mathrm{CS}: \quad \mathrm{an} / \mathrm{g} / \mathrm{y} \end{aligned}$
2.		$\begin{array}{r} 1970 \\ \text { D. } 6 \% \end{array}$	Dug	56.1*	46.4*	$\begin{gathered} \mathrm{T} . \\ \mathrm{F} 1 \mathrm{~m} \end{gathered}$	3.0	$\left\lvert\, \begin{gathered} \text { D } \\ \stackrel{50 n}{\stackrel{1}{2}} \underset{220 \mathrm{~m}^{2}}{ } \end{gathered}\right.$	Alluxium	Nov. '75	$\mathrm{SC}=580 @ 21.1^{\circ} \mathrm{C}$ WS: $15 \mathrm{~min} / \mathrm{d}, 3 \mathrm{~d} / \mathrm{w}, 2 \mathrm{~m} / \mathrm{y}$, DS: $4 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 3 \mathrm{~m} / \mathrm{y}$.
3.		1973	( Dug 0-77.0 $\begin{gathered}\text { Drilled } \\ 77.10-17.0 \\ \text { c.t. }\end{gathered}$		63.2*	\% ${ }_{\text {87m }}$	11.3	0 50 $A$ 44000	Sand	13 Nov. 75	SC=625 $21.77^{\circ} \mathrm{C}$ $\mathrm{WS}:-\mathrm{z}$ $\mathrm{DS} 12 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 4 \mathrm{ma} / \mathrm{y}$.
$\sim_{0}^{4 .}$		D. ${ }^{1973} 4$	Dus	55.9*	47.6*	$\begin{gathered} \mathrm{T} . \mathrm{s}_{\mathrm{m}} \end{gathered}$	-	$\begin{aligned} & 10 \\ & 5-10 \\ & A \\ & A 220 \end{aligned}$	${ }^{\text {Al1. }}$	5 Dec. ' 75	WS: $1 \mathrm{~h} / \mathrm{d}, 2 \mathrm{~d} / \mathrm{w}, 4 \mathrm{~m} / \mathrm{y}$,   DS: $2.5 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 8 \mathrm{~m} / \mathrm{y}$.
5.		1972	Dug	63.1 *	47.7*	${ }_{60}{ }^{\text {T }}$	4.1	17   30   10   1   1000	Lnam	$15 \mathrm{Nov}.{ }^{\prime} 75$	$\mathrm{SC}=420$ @ $21.7^{\circ} \mathrm{C}$   WS: $4 \mathrm{~h} / \mathrm{d}, 3 \mathrm{~d} / \mathrm{m}, 1 \mathrm{~m} / \mathrm{y}$.   DS: $1 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 5 \mathrm{~m} / \mathrm{y}$.
6.		$\begin{array}{r} 1969 \\ \text { D. } 4 \mathrm{x} \end{array}$	Dug	58.6*	52.4*	т.	-	$n$ 500 4 132	All.	$14 \mathrm{Nov}.{ }^{175}$	ws: $1 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, \mathrm{cm} / \mathrm{y}$. DS: $2 \sim 3 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, \mathrm{gm} / \mathrm{y}$.
		D. ${ }^{1972} \times$	Dug	62.9	54.2	60\%	7.6	$\begin{gathered} i \\ 1 \\ 1000 \\ i \\ 1 \\ 1 \\ 1 \end{gathered}$	Al1.	12 Nov. 75	$\begin{aligned} & \text { SC: } 560 \text { e } 23.9^{\circ} \mathrm{C} \\ & \text { WS: } 1 \mathrm{~h} / \mathrm{w} \\ & \text { DS: } 1 \mathrm{~h} / \mathrm{d} \end{aligned}$
	Q.in. 1 Km NE of Mobkhat Saleh Al Brax, $4 \mathrm{Kr} \mathrm{A}_{\mathrm{Al}}^{\mathrm{Al}} \mathrm{Brari}$ (Bir W of hwy. Kur2 \|Mobkhat) !	$\begin{aligned} & 1973 \\ & 4.4 x \end{aligned}$	Dug	61.7	49.6	$\begin{gathered} 9 \\ 60 \mathrm{~m} \end{gathered}$	8.5	$\left\lvert\, \begin{aligned} & 7 \\ & 15 \\ & A \\ & 1103\end{aligned}\right.$	$\left.\right\|^{\text {AlI. }}$	$4^{4}$ Nov. ${ }^{75}$	Sc=500 B $20.5^{\circ} \mathrm{C}$ DS: $3 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 4 \mathrm{~m} / \mathrm{y}$. Water sample 121916


TAGLE 5.--Hell inventory data, Maran Valley, Yemen Arai Rejublic - Continued

2kal.	Lucation	Qser	Apamimite	Txp		MEPTH TO (AAFR (ATmers)	$\begin{aligned} & \text { TYPE OF } \\ & \text { PGE OK } \\ & \text { METKO } \end{aligned}$		UsE.	aquifer		remarks
18.	$\begin{aligned} & \text { Q.H. Al Keda, } \\ & \text { N of Al Kolaby } \\ & \text { Village } \end{aligned}$	Ali Ahmed 11 Kolaby (Bir Heit Rasim Kolaby)	$\begin{array}{r} 1973 \\ 0.2 \times \end{array}$	nus,	$69.2 \times$	68.2*	\%.	3.8	( $\begin{gathered}\text { D } \\ 3 \\ 3 \\ 10 \\ 176\end{gathered}$	$\begin{gathered} \text { A11. } \\ 1, s, \end{gathered}$	3 Niv. ${ }^{75}$	$\mathrm{SC}=520$ 个 $21.1^{\circ} \mathrm{C}$ .WS:1-1/412/d,7d/w,4m/y. $\mathrm{DS}: 3 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 8 \mathrm{mi} / \mathrm{y}$.
19.	Q.H. Sallel, SW of Hamedat Village	Ali husse in al Lehe im (Bir Al Lehe (m)	$\begin{array}{r} 1962 \\ \text { d.tix. } \end{array}$	Dug	70.5*	59.9**	${ }_{70 \mathrm{~m}}^{4 .}$	6, 8	( $\begin{gathered}18 \\ 2000 \\ A \\ \text { A60 }\end{gathered}$	A11.	Nov. '75	$\mathrm{sc}=519$ 日 $22: 2^{\circ} \mathrm{C}$   ks: $1 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, \mathrm{mm} / \mathrm{y}$   DS: $41 / / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 8 \mathrm{~m} / \mathrm{y}$.
20.	Atais Hansedah,   2.5 KmH of   Raydah	Shaikh Aluned (Bir Atais)	${ }_{\text {Drilled }}^{1962}$	bug and   Drilled   C. T .	48.8*	4.2.2*	$\stackrel{\text { r }}{480}$	-	$\left\lvert\, \begin{gathered}n \\ 200 \\ A \\ 10.41 \\ 1\end{gathered}\right.$	Al1.8	2000.5	WS: $1 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}$.   DS: $2 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}$.   G1d dug well deepened by the Egyptians during, the Revolution.
$\underbrace{21 .}$	Q.H. E of beit Al Amri village $\square$		1973 d. $5 \times$	Dus	57.9*	52.9**	$\begin{gathered} \% \\ 55 m \end{gathered}$	6.:	0   $10 n$   1540	$\begin{gathered} \text { Al1. } \\ \text { i.s. } \end{gathered}$	$2 \mathrm{Nov}. \cdot 73$	$\mathrm{sc}=540 \mathrm{Cl} 20.5^{\circ} \mathrm{C}$   WS: $1 / 2 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 3 \mathrm{~m} / \mathrm{y}$.   inS: $8 \mathrm{~h} / \mathrm{d}, 71 / \mathrm{l}, 5 \mathrm{~m} / \mathrm{y}$.
22.	$\begin{aligned} & \text { Q.H. } 1.5 \mathrm{Km} \mathrm{NE} \text { : } \\ & \text { of beit nanep } \\ & \text { village } \end{aligned}$		$\begin{array}{r} 1973 \\ \mathrm{~d} .1 \times \mathrm{x} \end{array}$	Dus	74,6,	60.4*	$72.5 \mathrm{~m}$	0.8		Sand	10 Sov. 75	$\div \mathrm{SC}=490$ (1 $21.1^{\circ} \mathrm{C}$   jWS: $4 h / d, 3 d / w, 3 m / y$.   DS: $1-1 / 2 \mathrm{~h} / \mathrm{d}, 7 \mathrm{G} / \mathrm{w}, \mathrm{sh} / \mathrm{y}$
23.4		Moh'd Ahmed   Abdul1ah   Chaza (Bir   (Glazi)	$\begin{gathered} 1974 \\ d \cdot m \cdot x . \end{gathered}$	Dus,	70.\%	46.0*	67. ${ }^{\text {\% }}$	9.7	1 $A$ 4,361	A11.	$12 \text { Nov. } 73$	$\begin{aligned} & 5 \mathrm{SC}=400 \mathrm{a} 25.5^{\circ} \mathrm{C} \\ & \mathrm{wS}: 1 / \mathrm{hh} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, \mathrm{~h} \mathrm{\pi} / \mathrm{y} . \\ & \mathrm{BS}: 18 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 4 \mathrm{~m} / \mathrm{y} . \end{aligned}$
24.	$\begin{aligned} & \text { 4. H. Near road } \\ & \text { it Beit Al Amni } \\ & \text { v11, aze, 200m } \\ & \text { Wif b1r Qasim } \end{aligned}$	Mon'd pasym Al Amri (Bdr Moh'd Qasim)	1972.	$0^{3} \mathrm{~g}$	55.2	52.9	т.	3.3		1.s.	$12 \text { Nov. } 75$	$\mathrm{sC}=600$ e $16.7^{\circ} \mathrm{C}$   hs: $1 / 4 \mathrm{~h} / \mathrm{d}$   ins: $12-24 \mathrm{n} / \mathrm{d}$.   I
25.		A1 Ashwal (Bir   Abmed Abdullat \|A1 Astiwal)	1969	Dus	61.5*	-	T.	-	!	All.	23 Jun. 7 '7s	! ${ }^{\text {a }}$ ah/d at 2 h intervals.



NEAL	location	OSTEP	$\left\lvert\, \begin{gathered} \text { APProxTyATE } \\ \text { AGE } \end{gathered}\right.$	TYPE	$\left[\begin{array}{c} \text { TOTAL } \\ \text { DEPTII } \\ \text { (GETERS) } \end{array}\right.$	$\begin{aligned} & \text { DEPTII TO } \\ & \text { WATER } \\ & \text { (METRSS) } \end{aligned}$	$\begin{aligned} & \text { TYPE OF } \\ & \text { ORER OR } \\ & \text { PRETIIOM } \end{aligned}$	$\begin{aligned} & \text { Yield } \\ & (1 / \mathrm{s}) \end{aligned}$	USE.	aquifer	date of inve:tory	RETARKS
35.	Q.H. 200 mE of hwy. 8500 m S of Beit mujahto	Murshid $B 1 n$ Moh'd A1 Hermeli (Bir A1 Herneli)	${ }^{1969}$	Dug	61.4*	41.7*	$58.75 \mathrm{~m}$	-	$\begin{gathered} \text { D } \\ 300 \\ A \\ 308 \end{gathered}$	A11.	$14 \mathrm{Nev}$. '7s	WS: $\frac{3}{2} h / d$. DS: $6 \mathrm{~h} / \mathrm{d}$.
36.		$\left.\begin{aligned} & \text { Saleh Ahmed } \\ & \text { AI Cahteny } \\ & \text { (B1r AlMukrati) } \end{aligned} \right\rvert\,$	$\begin{array}{r} 1973 \\ \mathrm{~d} .2 \times . \end{array}$	Dus	56.3	54.2	т.	6.8	$\begin{gathered} D \\ A \\ 329 \end{gathered}$	Al2.	26 oct. '76	$\begin{aligned} & \mathrm{Sc}=520 \text { e } 19^{\circ} \mathrm{C} \\ & \text { ws: } \mathrm{n} \cdot \mathrm{p} . \mathrm{p} . \\ & \mathrm{DS}: 12 \mathrm{~h} / \mathrm{d} . \end{aligned}$
37.	O.R. SW of bin Basale, of 5 Km neater Brar viliage	Ali Saleh   Taher (bir   (al Jirra \#1)	1972	Thtg	64.9	60.3	т.	-	-	-	118 max. 75	-
32.	$\begin{aligned} & \text { 2.p. W of Bir } \\ & \text { Basale, so0m } \\ & \text { N of .Jirra } \# 1 \end{aligned}$	Moh'd Hussein   Jaher (Bir Al   Jirra \#2)	1974	Dus	54.5	50.2	$\stackrel{\mathrm{T} \cdot}{52.5 \mathrm{~m}}$	-	-	Al1.	[18 Mar. ${ }^{\text {P }} 75$	-
[is 39.	Q.h. Beside the road in Brar village	illay all al   Paqi (bir Al   Faqi Al1)	$\begin{array}{r} 1971 \\ d .1 \times . \end{array}$	Dug	$61.0 *$	$\underset{\text { Dya }}{55.9 *}$	т.	4.0	-	A11.	23 Jun. ${ }^{\prime} 75$	$\begin{aligned} & \mathrm{SC}=520 \text { o } 22.2^{\circ} \mathrm{C} \\ & \mathrm{P}: 8-1 \mathrm{~h} / \mathrm{d} . \end{aligned}$
40.		$\begin{aligned} & \text { I Saleh Ahmed } \\ & \text { Gufe (Bir } \\ & \text { Gufe) } \end{aligned}$	2971 d. $4 \times$	Dug	$\underset{\text { Rot }}{72.0 *}$	$\underset{\mathrm{Rpt}}{70.0 *}$	т.	-	-	L.oam	29 Jun. '75	P: $\frac{1}{\text { h }}$ / $/$ d,
41.	$\begin{aligned} & \text { o.f. S. side } \\ & \text { of Al } \mathrm{fzzar} \\ & \text { vf1lage } \end{aligned}$	Saleh Mohsin Al Birari (Bir Basale)	1974 d.m.x.	Dus	58.0	49.1	57m	-	-	-	18 Mar.'75	P: 3h/d @ heh/inter-
42.	Q.H.		1973	Dug	$\underset{\mathrm{Rpt}}{75.0 \star}$	64,6*	${ }_{72.5 \mathrm{~m}}^{\mathrm{r} .}$	-	-	-	15 Jan. 7	$\begin{aligned} & \mathrm{SC=675} \text { © } 22.2^{\circ} \mathrm{C} \\ & \mathrm{P}=2 \mathrm{~h} / \mathrm{d} . \end{aligned}$
43.	Q.R. 750 mm of bir Mohsin Al Hamadi	Labein Haza (Bir Marekh)	$\begin{array}{r} 1973 \\ 0.1 \times \mathrm{x} \end{array}$	Du8	$\begin{gathered} 63.7 \\ \text { Rpt } \end{gathered}$	57.8	$\begin{gathered} 7 . \\ 54970 \end{gathered}$	3.6	-	$\begin{aligned} & \text { All. } \\ & \text { Basalit } \end{aligned}$	11 Mar. 75	$\begin{aligned} & \mathrm{sc}=540 @ 22.2^{\circ} \mathrm{C} \\ & \mathrm{p}=12-24 \mathrm{~h} / \mathrm{d} . \end{aligned}$
44.	$\begin{aligned} & \text { Q.R. } 200 \mathrm{mN} \\ & \text { of B1r Jahian } \end{aligned}$	$\begin{aligned} & \text { Ald Mohanmed } \\ & \text { Al Faqi (B1r } \\ & \text { Al Faqi) } \end{aligned}$	1973	Dug	-	65.9	т.	6.8	-	$\begin{array}{\|c} \mathrm{Cal} .8 \\ \text { Ali. } \end{array}$	22 Jun.'75	$\begin{aligned} & \mathrm{sc}=495 \mathrm{~B} 28.7^{\circ} \mathrm{C} \\ & \mathrm{p}: 12 \mathrm{~h} / \mathrm{d} . \end{aligned}$

table 5,--Hell inventory data, Aaran Valley, Yearin Arab Republic - Continued

Sbict	1.0catron	OSER	$\underset{\text { ACPE }}{\text { APROMIMTE }}$	Trer		Dinpror mo hatrer matens	$\begin{aligned} & \begin{array}{l} \text { YPF OF } \\ \text { PיIT O OR } \\ \text { Mrytion } \end{array} \end{aligned}$	Yrel	Ws.	Amprem	DATE: 0 ¢	restarks
45.	O.H. Betc Al Amri, 750 m E of Hamada village	Ali Nagi Al Amyi (bit Marhab)	1975	Dus	55.8	-	None	-	-	$\begin{gathered} \text { silty } \\ \text { loam } \end{gathered}$	$19 \text { Apr. } 75$	New well and punp has not been installed
46.	$\begin{aligned} & \text { Q.A. W of the } \\ & \text { hary, } \mathrm{Kan} 72, \\ & 1.25 \mathrm{~km} \end{aligned}$		1974 n.d.	$\begin{aligned} & \text { Drilled } \\ & \text { C.T. } \end{aligned}$	$\underset{\mathrm{Rpt}}{175.0^{*}}$	Trace	Mone	-	-	${ }^{\text {f.oam }}$	110 Jun. 75	Drilled by Al Watary Co. Only a trace of water found.   Dril1ed by USAID/025
47.	Q.H. 3 Km W of hwy, K따 72.	Ministry of Agriculture (USAID Kim 72, or A1 Sheikb)	Jun. '75	$\underset{\mathrm{c}}{\text { Drilled }}$	244.0	None	None	-	-	Loam	[28.lun. 75	Drilled by USADD/025 Only a trace of water found. Borehole was not deveioped or cased
48.	Q.h. 350 m N of bic fiaj Alf brar village Audhar 12, near	Jahlan Mohotn (Bir Jahlan)	1973	Dug	68.5*	63.6*	т.	-	-	all.	'22 Jun. '75	P: 6h/d dit intervals
앙 49.	$\begin{aligned} & \text { Q.A. } 350 \mathrm{me} \\ & \text { of hwy, Kon } 72 \end{aligned}$	Mulajed Abu Shawareb (Rir Mujahed)	1973	britled   c.t.	$\underset{\mathrm{Rpt}}{173.8}$	-	s.p.	-	-	I.oam	${ }^{25} 3$ Jun. 75	,
50.		Ali Husseita Al Ma1ahi ; (Bic Al Dhar)	-	Dug	-	53.9 mm.	т.	3.9	-	$\begin{aligned} & \text { A11. } \delta \\ & \text { 1.s. } \end{aligned}$	'17 Jun. ${ }^{\text {7 }}$ )	
51.	$\begin{aligned} & \text { o.t. } 1.75 \mathrm{~km} \\ & \text { o. of hanuda } \\ & \text { village } \end{aligned}$	(bit Salif)	1972	Dug	67.2	64.4		-	-		${ }^{11}$ Mar. ${ }^{75}$	$\int_{\text {vals }}$
52.	$\begin{aligned} & \text { Q.4, } 750 \mathrm{~m} \text { S of } \\ & \text { vi11.age Museit } \\ & 1.5 \mathrm{Km} \mathrm{~S} \text { of } \\ & \text { Sarbat } \end{aligned}$	Alf Hugse1n (biz Ali Hugse in)	1973	Dug	${ }_{\text {Rpt }}^{68.00^{\text {a }}}$	6f. $9 \%$	т.	-			${ }^{17}$ Jun. 75	P: 3h/d.
53.	o...	$\left.\right\|_{\text {Asssan Sa'ad }} ^{\text {As Sirihy }}$	-	$\begin{aligned} & \text { Drthed } \\ & \text { C.T. } \end{aligned}$	$\underset{R p t}{165.9}$	$\begin{aligned} & 43.9 \\ & \text { Ryt } \end{aligned}$	${ }_{125} \mathrm{~T}_{\text {m }}$	-		$1-$	4 Feb .7	$515 c \times 585$ e $23.33^{\circ} \mathrm{C}$
54.	$\left.\right\|_{\text {Bir Marekh }} ^{9.11 .} \quad \begin{gathered} 350 \mathrm{~m} \\ \mathrm{~B} \end{gathered} \text { of }$	$\left\{\begin{array}{l} \text { Altish Al Al } \\ \substack{\text { Atish } \\ \text { Aztah) }} \end{array}\right.$	1973	Dug	\| -	65.9	$\underset{\sim}{\text { ¢ }}$ ¢ mm	-			$\left.\right\|^{11 \text { Max. }{ }^{\prime} 75}$	

TABLE 5.- Nell inventory data, Amran Valley, Yemen Arab Republic - Continued

41.	L.OCMtion	OSER	$\left[\begin{array}{c} \text { approximate } \\ \text { ace } \end{array}\right]$	\%pi:		$\begin{aligned} & \text { DEPTH } \\ & \text { (ATER } \\ & \text { (BYTY:S) } \end{aligned}$		$\begin{array}{\|c\|c\|c\|} \text { YIED } \\ (1 / s) \end{array}$	ilse	Angurer	DAZE UF INVENTORY	\| remakis
55.		Saleh Rassim	1975	Dug	-	-	None	-	-	-	22 Jun. 77	-
56.		AIf Abdullah Al Khubari (Bir Al Khubari)	1974	Nas	55.0	SI. 6	т.	-	-	Al1.	18 Mar. 775	
57.	O.H. 1 km NW of;      w of Bir AI   Hand 1, 500in $S$   of Bir Ghazi	Haj Ali Audha (Bir ea' al Sharif or Audha 11)	1974	Dug	55.4	44.2	$\begin{gathered} \mathrm{T}_{52.5 \mathrm{~m}} \end{gathered}$	-	-	A11.	22 Jua. 75	P: 8h/d; 2h per time   A 1h intervals
58.	$\begin{aligned} & \text { O.H. } \quad \text { First } \\ & \text { weli } 500 \text { sin } \\ & \text { of Brar viliage } \\ & \text { SE of Hamda } \end{aligned}$	$\begin{aligned} & \text { Haj Ali Audha } \\ & \text { (Bir Haj Ali } \\ & \text { Audha } \approx 2 \text { ) } \end{aligned}$	-	mog	54.2	53.2	т.	-	-	1-		'
59.	$\text { \| } \mathrm{O}, \mathrm{H}, \quad 2 \mathrm{Km} \mathrm{SE}$	$\begin{aligned} & \text { Hamed Sinan } \\ & \text { Sirar (BAr } \\ & \text { Sirar) } \end{aligned}$	$\begin{gathered} 1969 \\ \mathrm{~d} .1 \mathrm{x} \end{gathered}$	Dug	37.1	34.4	т.	-	-	Basalt	124 Jun. 75	P: Lst/d.
60.	$\begin{array}{ll} \text { o.h. } 2.5 \mathrm{Km} \\ \text { of Hamud vill } \end{array}$	Shaik Mohsin Al Hamudi	1974	Dug	$\begin{gathered} 65.00^{64} \\ \mathrm{Rpt}^{2} \end{gathered}$		т.	4.5	-	$\begin{aligned} & \text { All. } \& \\ & \text { Basalt } \end{aligned}$	15 Jan. 75	$\begin{aligned} & \operatorname{sc}=560 \mathrm{e} 22.8^{\circ} \mathrm{C} \\ & \mathrm{P}: 12 \mathrm{~h} / \mathrm{d} . \end{aligned}$
62.		Kaid Al Lahei (Bir Al Laher)	-	Dug	$\begin{array}{r} 6.3 \\ \text { Rpt } \end{array}$	$\begin{aligned} & 51.3 \\ & \mathrm{pppt}^{3} \end{aligned}$	$\begin{gathered} 7.50 \\ 0 . \end{gathered}$	-	-	All.	$22 \mathrm{Jun} \cdot 75$	P: $12 \mathrm{~h} / \mathrm{d}$.
62.	Q.H.	Moh'd S'ad Dhawtaa Sarubi	$\begin{aligned} & 1973 \\ & n, d . \end{aligned}$	Dug	71.6	59.1	т.	-	-	-	${ }^{15}$ Jun. ${ }^{7} 7$	
63.	Q.H. 150 m W of   Bir Yahya, at the base of Beit Al Amri village	Saleh Kassim   Al Amri (Bic   Kassim)	1974	Dug	$62.2 *$	57.7*	т.	-	-	Loam	24 Jun.'75	$\mathrm{P}: 3 \mathrm{sh} / \mathrm{d}$.
64.	$\left\lvert\, \begin{aligned} & \text { Q.H. 45m W of } \\ & \text { Bir Moh'd } \\ & \text { Kassion } \end{aligned}\right.$		1975	Dug		55.7	-	-	-	calcret	24 Jun. 75	Well was in the proces of deepening at time lof inventory.




TABLE b.--tell inventory data, maran Valley, Yemen Arab Re;phlic - Cont inued

NHLL t	Locartios	0 aser	$\left\{\begin{array}{c} \text { AP\| } 2 \text { R0XY } \\ \text { ATNTE } \end{array}\right.$	TyPI:				${ }^{\text {Y/E]PD }}$ (1/s)	isf	Ifex		Remank
95.		$\begin{aligned} & \text { Mon'd A1i Al } \\ & \text { habyedh (Bir } \\ & \text { Al Labyedh) } \end{aligned}$	1967	Dag	8. 5	53.0	т.	-		${ }^{\text {l.ann }}$	29 Jun. 75	P: $\mathrm{L}-1 \mathrm{l} \mathrm{h} / \mathrm{d} /$ d.
96.	: wel1.		1966	sur	${ }_{\text {Rpt }}^{41.0}$	${ }_{\substack{38.4 \\ 0 y \%}}$		8.5	$\underset{\substack{100 \\ 200 \\ 2200}}{\substack{2}}$		130 Dec .74	$\begin{aligned} & \mathrm{sc}=410 \in e^{23 .}{ }^{\circ} \mathrm{C}=24 \mathrm{~h} / \mathrm{d} . \end{aligned}$
97.	dah village  	Xharif area Cooperative '(Bir Kharif	oct. 74	$\underset{\mathrm{R}}{\text { Driled }}$	85.4	33.5*	ヶ.		${ }^{1}$		Ju1. 75	Drilled by USAID/Mín of Public Works.
98.	Majafir, 4 Km SE of Raydah, $150 \mathrm{~m} \$$ of Bir Mahat	Mob'd $\mathrm{Al}_{1}$ Abdu (Bir Majafir)	1972	Dog	33.5	32.0	т.	-	$\begin{array}{r\|} \hline 250 \\ \hline \\ \hline 3080 \end{array}$		${ }^{28}$ Apr. ${ }^{\text {P }} 7$	ds:
99.	Al Gowahe $1, E$ of hwy. Km 65		$\begin{gathered} 1971 \\ d .1 \times .1 \end{gathered}$	Dus	41.3	${ }_{\text {by }}^{36.5}$	${ }_{37}^{7}$ \%. 5 mm	9.7	D 3 3 2200		12 oct . 75	
100.	$\begin{aligned} & \text { Autan AI Sality } \\ & \text { 100m , of hwy } \\ & \text { Kng6. } \end{aligned}$	Al Sality) $\begin{aligned} & \text { Rashid A1 } \\ & \text { Mujahid (Bir } \\ & \text { Al Sality) } \end{aligned}$	${ }_{\text {d. }}{ }^{1974} \mathrm{x}$.	Dog	4.3	39.0	$\underset{42 \mathrm{id}}{\text { T. }}$	3.4	${ }_{880}$	al1.	:12 Aug.'78	$\begin{aligned} & \mathrm{sc}=600 \circledast 20.5^{\circ} \mathrm{C} \\ & \mathrm{~ns}, \\ & \mathrm{~ns}: 7 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 9 \mathrm{~m} / \mathrm{y} . \end{aligned}$
101.	gata al firna, Suflah, 1.5 Km SW of Jubal vilic, \& $4 \mathrm{Km} W$ of hwy.	$\begin{aligned} & \text { Abdullah } \\ & \text { Alale } \\ & \text { Alalye) } \end{aligned}$		Dusg	64.7	59.1	${ }_{60 \text { \% }}{ }^{\text {\% }}$	1.9	$\begin{aligned} & D \\ & 400 \\ & 440 \\ & 440 \end{aligned}$	${ }^{111 .}$	11 Aus. ${ }^{\text {a }}$	
102.	2Km S of Jubal   illage \& 4 Km   \% of hwy.	$\begin{aligned} & \text { Senan Ibn } \\ & \text { Mokbil (Bir } \\ & \text { A1 Kazo'a) } \end{aligned}$	${ }_{\text {d.1 }}^{1971}$	Dus	59.6*	55.8*	т.	3.8	$\begin{aligned} & 400 \\ & 704 \\ & 704 \end{aligned}$	A11.	ang.	
103.	Jub AI Suflah, 1.5 Km W of hwy 150 m N of v 111 Ker64.	Saeed Saleh Ga'rah (Bir Ai llunaish)	1970 $d .5 \times$.	Dug	53.3	41.4	т.	5.7	$\begin{gathered} \text { D } \\ 200 \\ 220 \\ 220 \end{gathered}$	al1.	111 Aug.'	

TABLE 5.--Hell inventory data, Aaran valley, Yemen arab Republic - Continued





.tEL $\#$	localion	0 OSER	$\underset{\substack{\text { APPROXIMATE } \\ \text { dGE }}}{ }$	TYPE	$\left\{\begin{array}{c}\text { RMA: } \\ \text { nerta } \\ \text { (TREMS) }\end{array}\right.$	DEPTIITO wates (emetirs)	$\begin{gathered} \text { TYPE OF } \\ \text { PuIP OR } \\ \text { RETHOD } \end{gathered}$	$\begin{aligned} & \text { YISLD } \\ & \langle 1 / s\} \end{aligned}$	USE	apgifer	pate or   JNvertory	REMCRKS
142.	500x SW of Menjydah village, Km64. 4 Km E of hwy,	Cooperative   (Bir Menjidah   (2).	Oct. '75	$\underset{\substack{\text { Drinled } \\ \text { R. }}}{\text { den }}$	143.3	(46.4)*	None	14.5	${ }^{-}$	1.5.	$\left\{\begin{array}{l} 10 \text { oct } i^{775} \\ 1 \text { Sep. } 76) \end{array}\right.$	Dritled by USATD/025 for exploration, turned over to village for domestic use, pump not installed at time of inventory. Water Samile 121901
143.	Qaa Agebat, 400 m R of hwy, Kmbo.	$\begin{aligned} & \text { nith'd yahya A1 } \\ & \text { Sarainy (Birt } \\ & \text { Agebar) } \end{aligned}$	1970 d. $4 \times$	Dug	46.3*	45.2*	т.	-	$\left[\begin{array}{c} D \\ 18 \\ A \\ 1100 \end{array}\right.$	Al1.	15 Sep.'75	
144.	Al Segaiah, 30 m E of hwy, Kim62.	hidah niss (Bit A1 Segafah)	$\begin{gathered} \text { old } \\ \text { d.m.x. } \end{gathered}$	Dug	44.8*	43.8*	т.	5.2	$\left\lvert\, \begin{gathered}\text { D } \\ 13 \\ \text { A } \\ 1320\end{gathered}\right.$	All.	18 Aug. 7	
145.	3Km E of hwy, Kris . $63,100 \mathrm{~m}$ E of Al USAID resthouse	antii Abmed Al Mongedy (Bir ! Glau Al Ga'a)	$\begin{array}{r} 1972 \\ \mathrm{~d} .1 \times \mathrm{x} \end{array}$	Bug	43.7*	$\begin{gathered} 39.3^{3 *} \\ \text { Dyn } \end{gathered}$		4.0	( $\begin{gathered}\text { D } \\ 9 \\ A \\ 1540\end{gathered}$	All.	\|15 Sep.'75	$\begin{aligned} & 5 \mathrm{~S}=490,21.1^{\circ} \mathrm{C} \\ & 5 \mathrm{wS}=-24 \mathrm{~m} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 9 \mathrm{~m} / \mathrm{y} . \\ & \mathrm{NS}: \end{aligned}$
\% 146.	$\begin{aligned} & \text { Al Menjidah, } 8 \\ & \mathrm{Km} \text { E of hwy km } \\ & 63 \text {. } \end{aligned}$		1969	lug	38.3*	36.0*	т.	-	$\left\lvert\, \begin{gathered}\text { D } \\ 20 \\ 20 \\ 1760\end{gathered}\right.$	-	19 Sep. 75	HS: $16 \mathrm{~h} / \mathrm{d}, 6 \mathrm{~d} / \mathrm{m}, 3 \mathrm{mog} / \mathrm{y}$.
147.	Al Menjidah, 300m $\varepsilon$ of USAID resthouse.	${ }_{\text {(Bir Saleh) }}$	-	Dug	47.8*	$\begin{gathered} 39.2 \star \\ \text { Dn. } \end{gathered}$	т.	5.7	-	-	$\bigcirc$ Sep. 7	SC=550 $21.1^{\circ} \mathrm{C}$
148.	$\begin{aligned} & \text { Al Arar, } 150 \mathrm{~m} \\ & \text { E of thyy, } \mathrm{Km} \\ & \text { E1.5m. } \end{aligned}$	Moh'd Abdullah Morafik (Bir ( 1 Arar)	1973	Dug	38.2*	-	-	-	-	Rasalt	11 Aug.' 75	5
149.	Jenah, 1 km E of havy, Km60.	Nasir Monassir:   (Bir Jenah)	\% $\begin{gathered}1968 \\ \text { d.m.x. }\end{gathered}$	Dug	46.4	42.0	4. ${ }_{4} \mathrm{Sm}$	-	( $\begin{gathered}250 \\ \text { A } \\ 380\end{gathered}$	A11.	$200 c t$.	
150.	Seed, 500 E E of thuy, Kmb1.	$\begin{aligned} & \text { Magbil Thais } \\ & \text { (Bir Sced) } \end{aligned}$	d.m.x. d.	Dus	44.9	44.3	т.	-		Bassit	20 oct. 75	WS: :h/d. DS: 12h/d.

TABLE 5.--Hell inveitory datd, Amran Valley, Yenien Arab Re;ublic - Continued

A13L \%	L.OCATION	OSER	$\left\lvert\, \begin{gathered} \text { APpRoxMMre } \\ A C E \end{gathered}\right.$	Tres		$\begin{aligned} & \text { DEPTIA TO } \\ & \text { WAYER } \\ & \text { (OFFTERS } \end{aligned}$		$\begin{aligned} & \text { YIELD } \\ & (1 / 5) \end{aligned}$	USE		tate or inventorer	1 REMARES
151.	Mentidali, 1 km E of hwy, Kimb4.	Shaikh Abdul1a Bin lussein $\AA$ Akhnar (Bir Merhab)	1970	lug	46.2*	$\begin{gathered} \text { 38,9* } \\ \text { Dn. } \end{gathered}$	T.	7.6	-	-	16 Sep. 75	
152.	Ga'a Jaub, SKm (E of hwy, Kr663, [500m N of USAID iresthouse.	Abdullah Akbah (8ir Abdullah)	$\begin{aligned} & 1973 \\ & \text { n. } 1 . \end{aligned}$	Dus	52.2*	37.9\%	458.	9.7	$\begin{gathered} D \\ 1 \\ 4 \\ A \\ 11760 \end{gathered}$	-	$17 \text { sep. } 75$	$\begin{aligned} & \mathrm{SC}=500 \\ & \mathrm{ws}: 1 \mathrm{n} / \mathrm{d}, 2 \mathrm{~d} / \mathrm{d} / \mathrm{w}, 3 \mathrm{C} / \mathrm{c} / \mathrm{y} . \\ & \mathrm{DS}: 16 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 9 \mathrm{~m} / \mathrm{y} . \end{aligned}$
153.	Al Awasej, 6 Km E of hwy, t'm61	Ali Moh'd Al Jehrani (Bir - al Jehzani)	-	Dug	49.1	30.7	44. ${ }^{\text {T }}$ \%	-	${ }_{4}^{\text {D }}$	-	23 Sep .77	-
154.	AAl Dahr, 200n 2 lof hwy, Kro64.	Saleb sagir Al Mujahed (Bir'Al Dahr)	$\begin{aligned} & 1970 \\ & \text { n.d. } \end{aligned}$	Due	42.1	37.\%	$\begin{gathered} \mathrm{T} . \\ 37.514 \end{gathered}$	5.2	$\begin{gathered} \text { D } \\ 3 \\ A \\ 1760 \end{gathered}$	A11.	${ }^{17}$ Sep.'75	
$\overbrace{155}$.	Menj fdah, 3km r iof hwy, Km63. 500ia N of UJSID House.	Hebkat Sa'ad Serthan (Hif \|Al Zilah)	¢ 1068	Dug	42.8	$\begin{gathered} 3.4 \\ n .4 \end{gathered}$	т.	7.6	D 25 A 2540		$i^{i}$	Sc=600 a $18.3^{\circ} \mathrm{C}$ WS: $3 \mathrm{~h} / \mathrm{d}, 2 \mathrm{~d} / \mathrm{w}, 3 \mathrm{~m} / \mathrm{y}$. DS: 14h/d, 7d/w, 9n/y.
156.	Menjtah, 50m 5 Iof USAID house, 3Km E of hwy, Kn63.	Saleh Manea   (Bic .Jereb Badi)	1971 d.m.x.	Dug	44.2	-	42.9 .50	4.9	0 30 A 11760	calcrets Ali,	24 Feh. 76	
157.	A1 Elama, 2Kme: of hwy, Xm60.	Hussein bin Hussein Al Montaser (Bir A1 Eiana)	- $\begin{array}{r}1970 \\ \text { d.m.x. }\end{array}$	Dug	53.2	43.0	$\begin{gathered} { }^{\mathrm{c}} . \mathrm{P}_{\mathrm{m}} \end{gathered}$	-	D 200 A 1760 0	${ }^{\text {Al1. }}$	20 Oct. ${ }^{\text {r }}$	WS: 'in/d.   DS: $12-14 \mathrm{~h} / \mathrm{d}$.   $\mathrm{SC}=370$ - $32.2^{\circ} \mathrm{C}$
158.		Siaikh Abmed   (Bic Atheya)	1 -	Dus	! -	-	$\begin{array}{r} 7 . \\ 34 m \end{array}$	5.2	¢   30   A   880	-	$\left.\right\|_{5 \text { spr. }} 176$	HS: n.p.   ns: $12 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}$.
159.	$\begin{aligned} & \text { Ai Juby, } 1.25 \mathrm{Km} \\ & \text { : of hwy. } \end{aligned}$	Atawil   (Bic Aniz)	¢ $\begin{aligned} & 1971 \\ & \text { d. }\end{aligned}$	Dug	- -	-	${ }_{37}{ }^{\mathrm{T} .5 \mathrm{~m}}$	6.8	$\left\|\begin{array}{c}\text { 2 } \\ 20 \\ 13 \\ 1320\end{array}\right\|$	${ }^{111 .}$	7 Apr . ${ }^{\text {P6 }}$	









TABLE S. $\rightarrow$ Hell inventory data, Anaran Valley, Yewen Arab Republic - Cont inued

*LL	tion		$\underset{A P r q u x i v e l}{A G E}$	тyp:					m:SE	N0		Remarks
245	${ }_{\text {al }}^{\text {an }}$ Jannat.	$\begin{aligned} & \text { Hay Noh'd Al } \\ & \text { Shedadi } \\ & \text { (Bir AI Dar) } \end{aligned}$		nug		-	Not ${ }^{\text {ºused }}$				1	
246		Atused Nasir   (Bir Sarie)	$\underset{\text { d. }}{\substack{\text { v.0id } \\ \text { d. }}}$	Dug	-	32.6	$\underset{3}{74 \mathrm{~m}}$	8.5	$\begin{gathered} \mathrm{c} \\ 40 \\ 40 \\ \mid 3520 \end{gathered}$	1.s.		$2.2^{\circ} \mathrm{C}$ $7 \mathrm{~d} / \mathrm{w}, 7 \mathrm{nn} / \mathrm{y}$ $7 . \mathrm{w} / \mathrm{w}, 5 \mathrm{~m} / \mathrm{y}$
247	3annat, 100 ro $S$ :   of Bir Al Haid.	Ali hussein Owda (Bir Al Kizana)	v.old	ing	30.0	тrace		-	-			The well has not been used since 1975
248.	1 Km W of Jamas 300n E Bir Ashwal.	$\begin{aligned} & \text { Abdullah } \\ & \text { Adhan } \\ & \text { Alir Adian) } \end{aligned}$	${ }_{\substack{\text { v.old } \\ \text { d.a.x. }}}^{\text {a }}$	nug	(38.9)	(27.3)	35 m	4.0	1540	${ }^{111 .}$	(19)301.	ws: $16.1 / \mathrm{d}$.
24.			$\xrightarrow{\text { v.01d }} \mathrm{s}$.	pug	42.7	-	$\stackrel{4}{4}$	6.8	¢ ${ }_{\text {D }}$	${ }^{111}$		$\begin{aligned} & 560620 @ 23.3^{\circ} \mathrm{C} \\ & \mathrm{P}: 12-24 \mathrm{~h} / \mathrm{d} . \end{aligned}$
$\stackrel{\infty}{250}$.	${ }^{30 n m}$ w of huy,	$\begin{aligned} & \text { Ahmed Ali } \\ & \begin{array}{l} \text { Ahes } \\ \text { Husce in (Bir } \\ \text { HAl Museref) } \end{array} \end{aligned}$	-	Dug	30.7	-	${ }_{29}{ }^{7} \mathrm{~m}$	4.0	-	${ }^{11}$.	24 Feb 7	$!5 \mathrm{C}=795 \mathrm{C}$ 22.2 $2^{\circ} \mathrm{C}$
251.			(1970	Dus,	39.9	37.14		1.7	30   88   880		25 reb.	$\mathrm{SC}=740 \mathrm{P}$ 22.20
252.	$\left.\begin{array}{\|c} 1 \\ s \text { side of Jan- } \\ \text { nat } \\ \text { center onee } \\ \text { centint } \end{array} \right\rvert\,$	Cooperative (Bir Al Shergi?	$\underset{\substack{\text { v.01d } \\ \text { d.m.x. }}}{ }$	Dog	Toue	23.2	$27.5 \mathrm{~mm}$			${ }^{\text {a11. }}$	25	
253	700 m of hwy,   Km50		${ }_{\text {d. }}^{\substack{\text { v.01d } \\ \text { d. }}}$	c.т.			$\begin{gathered} 52.6 \mathrm{ma} \\ \hline \end{gathered}$	8.5	¢ $\begin{gathered}\text { D } \\ 50 \\ 6600\end{gathered}$		17 reb	WS: $\mathrm{n} . \mathrm{p}$. DS: $14 \mathrm{~h} / \mathrm{d}$. Dug well deepened by Al watary Co.
254.	Jannat, 400m E of Rir Mukadam	Ahred lussein Sheban (Bir Sherara)		Dug	-	-	42.5mm	6.2	¢ ${ }_{\text {n }}^{\text {is }}$	Basatr	$24 \mathrm{Feb} .76$	- SC=575 〔 $22.2^{\circ} \mathrm{C}$   HS: $1 / 2 \mathrm{~h} / \mathrm{d}$.   DS: $26 \mathrm{~h} / \mathrm{d}$.






TARLE 5.--xet1 inventory data, Auran Valley, Yemen Arab Republic - Contimued

*LLe	1.0 Caftos	$0 \times \mathrm{mc}$		TrP\%.				$\begin{array}{\|l\|} \hline \text { YTELD } \\ (1 / s) \\ \hline \end{array}$	usk	anyer		remaris
302.	Beit Badis2.5kud $S$ of Beit Rumyan village.		1956	Dug	43.3	36.9	r. Not used	-	-	-	28 Jan. 76	The well has not been used since 1974 due to insufficient quantity of water
303.	$7 \mathrm{~K}_{\mathrm{m}}$ NW of Arsran Beit Rumyan ViLlage.	Runnyan   (Bir Runyan)	$\underset{\text { d.a.x. }}{\substack{\text { v.01d }}}$	Dug	${ }^{21.1}$	${ }_{\text {pha }} 9.6$	т.	8.5	$\left\lvert\, \begin{gathered} \mathrm{D} \\ 70 \\ 1 \\ 100 \end{gathered}\right.$	-	14 Jan. 7	$\mathrm{SC}=740$ \& $21.1^{\circ} \mathrm{C}$   wis Rpt. to ins: int Ds: 3n/d.
304.	Son w of Runyan.	Murshed A1Agary   A1 Jaeidy	1965	Dug	51.5	44.3		-	-		$1{ }^{17}$ Jan. 76	The wel1 has not been weed since 9974 .
305.	4 Krn NW of Asran 1 Km W of Beic Al Faqih.		${ }_{\text {d.s.x. }}^{1973}$	$\left\|\begin{array}{c} \text { Dog Dri11ed } \\ \text { C.T. } \end{array}\right\|$		-	${ }_{45 \mathrm{~mm}}^{4 .}$	13.6	${ }_{374}^{\text {A }}$	A11.	131 dec .75 !	
$\sim_{306}$.	4Kn NW of   Amran	Haj Ahmed AI Sultan (Bir Al Sultan :2)	$\begin{gathered} 1955 \\ \text { d.m.x. } \end{gathered}$	Dug	(42.2)*	(40.8)*	1.	4.3	0 50 880 880	${ }^{111 .}$		
307.	Jannat, 70m w   of hwy, 100 m of Bir Hanabrah	Moh'd Sadabah' (Bir Kharab)	1973	Dug	35.7*	${ }_{\substack{3 \\ \text { min }}}^{\text {34* }}$	т.	7.6	$\begin{gathered} \text { D } \\ 30 \mathrm{~g} 0 \end{gathered}$	11.	23 Ju1.	$\mathrm{sc}-670 \text { e } 17.8^{\circ} \mathrm{C}$   P: $12 \mathrm{~h} / \mathrm{d}$.
308.	I, 25Km W of hwy, Km50.5.	; Mokbil Adlan (Bix Mohsín)		Dug	4.4	-	$\stackrel{\text { T. }}{34 \mathrm{~m}}$	11.3	-		16 Feb. '76	. $\mathrm{sc}=625 \mathrm{E}^{22} .2^{\circ} \mathrm{C}$
309.	Jannat, 200m W   f hwy, E side   of Jannat Vill.	Min. of Agr.	Max. 75	$\underset{\mathrm{c}}{\text { Oriled }}$	44.2	26.1*	None	-		A11.		Drilied by USAID/02S Water Sataple - not in table 7.
310.	$\begin{aligned} & \text { Janat, } 200 \mathrm{~m} \text { us } \\ & \text { of haw, } \\ & \text { from wel1 } \end{aligned}$	$\begin{array}{\|l\|l} \left(\text { Sananat } p_{2}\right) \\ \text { Minn of } A \mathrm{Ar} . \end{array}$	Jun. '75	$\underset{\substack{\text { drilled } \\ \text { R }}}{\text { den }}$	24.0	18.2*	None	-		all.	16 Jun .1	Drilled with rotary IIg by USAID/025.



AEll ${ }^{\text {a }}$	Location	oner A	$\begin{gathered} \text { Aprroz pate } \\ \text { AGE: } \end{gathered}$	rype	$\begin{gathered} \text { TOOMAL } \\ \text { DEMTM } \\ \text { (ilRTERS) } \end{gathered}$	$\begin{gathered} \text { DEPTH TO } \\ \text { (ATER } \\ \text { (HPERS) } \end{gathered}$	$\begin{aligned} & \text { TYPE OF } \\ & \text { PBE OR } \\ & \text { MFTHiOD } \end{aligned}$	$\begin{aligned} & Y(L E L D) \\ & (1 / \mathrm{s}) \end{aligned}$	uSE	aputeer	$\|$DATE Of   EVERTORY	REMMANS
302.	Beit Badt, 2.5 ko $S$ of Best Rumyan Village.	$\left.\begin{array}{\|ll} \text { Abdu } & \text { Omeri } \\ \mid \text { (Bir A1 Faq1 }) \end{array} \right\rvert\,$	1956	Dug	43.3	36.9	T. Not used	-	-	-	18 Jan.'76	The well has not been used $s$ ance 1974 due to insufficient quantity of water.
303.	7 Km Nit of Amran Beit Rumyan Village.	Saleh Msbarik Rumyan (Bir Rumyan)	${ }_{\text {d. }}^{\substack{\text { v.oid } \\ \text { d.m. } \\ \text { c. }}}$	Dus	21.1	$\begin{aligned} & 9.6 \\ & \text { Dyn } \end{aligned}$	т.	8.5	$\left\|\begin{array}{c} 8 \\ 70 \\ A \\ 1100 \end{array}\right\|$	-	14 Jan. ${ }^{\prime} 76$	$\left\{\begin{array}{l} \mathrm{SC=}=70 \in 21.1^{\circ} \mathrm{C} \\ \mathrm{ws}=\mathrm{Rpt} . \operatorname{to~be~flowing~} \\ \mathrm{DS}: 3 \mathrm{~h} / \mathrm{d} . \end{array}\right.$
304.	$\begin{aligned} & 500 \mathrm{~m} \text {. of Bett } \\ & \text { Rumyan. } \end{aligned}$	Murshed A1 Agary (Bir Al Jaeidy)	1965	Dug	51.5	44.3	T. 48 m Not used.	-	-	-	17 Jan.'76	The well has not been used since 1974.
305.	4 Km NW of Arran 1 Km W of Bett A1 Faqih.	$\begin{aligned} & \text { Al Haj Ahned } \\ & \left.\begin{array}{c} \text { A1 Sultan } \\ \text { (B1r A1 Sultale } \\ \text { (1) } \end{array}\right) \end{aligned}$	$\frac{1973}{d . s . x .}$		$\begin{array}{\|c\|} \text { Dug 0-53.0 } \\ \text { Dri13ed } \\ 53.0-88.0 \\ \text { Rpt } \end{array}$	-		13.6	${ }_{3740}$	${ }^{\text {all. }}$	$131 \mathrm{Dec}.{ }^{7} 75$	$S 0=650$ ค $21.1^{\circ} \mathrm{C}$   WS: $\frac{1}{2} \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 4 \mathrm{~m} / \mathrm{y}$.   $D S: 24 h / d, 7 d / w, 8 m / y$.   Dug well deepenad by   A1 Watary Co.
$\sim_{306}^{\infty}$.	$\begin{aligned} & 4 \mathrm{Km} \mathrm{NN} \text { of } \\ & \text { Amran. } \end{aligned}$	Haj Ahmed AI Sultan (bir al sultan k2)	$\begin{aligned} & 1955 \\ & \text { d.w.x. } \end{aligned}$	Dus	(42.2)*	(40.8)*	т.	4.3	$\begin{gathered} D \\ 50 \\ \text { A } \\ 880 \end{gathered}$	${ }^{\text {Al1. }}$	$\left\{\begin{array}{l} 18 \text { Jan. }{ }^{\circ} 76 \\ 9 \\ \hline \end{array}\right)$	$\begin{aligned} & s \mathrm{C}=650 \& 21.1^{\circ} \mathrm{C} \\ & \mathrm{sin} \\ & \mathrm{ws}=-1 \mathrm{~h} / \mathrm{d} . \\ & \mathrm{DS}: 12 \end{aligned}$
307.	Jannat, 70 m W of hwy, 100ns of Bir Hanabrah	Moh'd Sadabah   (Bir Kharab)	1973	Dos,	35.7*	$\underset{\substack{\text { 34.3* } \\ \text { Dyn }}}{ }$	т.	7.6	$\begin{gathered} \mathrm{D} \\ \mathrm{~A} \\ 3080 \end{gathered}$	${ }^{\text {al1. }}$	23 Ju1. ${ }^{\text {7 }}$	$\left\{\begin{array}{l} \mathrm{sc}=670 \mathrm{P} .17 .8^{\circ} \mathrm{C} \\ \mathrm{P}: 12 \mathrm{~h} / \mathrm{d} . \end{array}\right.$
308.	1.25 Km w of hwy, Km50.5.	Mokbil Adlan (Bir Mohsin)	$\underset{\substack{\mathrm{v} .01 \mathrm{~d} \\ \mathrm{~d} \cdot \mathrm{x} .}}{ }$	Dus	41.4	-	$\stackrel{\text { 3 }}{ }{ }^{\text {T }}$.	11.3	-	-	116 Feb .76	Sc* 625 22.2 $2^{\circ} \mathrm{C}$
309.	Jannat, 200 mW of hwy, E side of Jannac Vil1.	$\begin{aligned} & \text { (Jannat } \\ & \text { Min. of } \mathrm{Ag} \text { ) } \end{aligned}$	Max. ${ }^{\text {7 }} 75$	$\underbrace{\text { Drinled }}_{\text {dra }}$	44.2	26.1*	None	-	-	Al1.	$15 \mathrm{Mar} .{ }^{\prime} 7$	Drilled by usaid/02s Water Sample - not in table 7.
310.	Jannat, 200m W of hwy, 30 m fror Well \$1.	(Jannat 12) Min. of Agz.	Jun. '75	$\underset{\mathrm{R}}{\text { Drilled }}$	244.0	18.2*	None	-	-	All.	16 Jun. ${ }^{\text {P }} 76$	Drillied with rotary   rig by usaid/025.



TABLE 5.--Hell inventory data, Aaran Valley, Yemen Arab Republic - Continued

WELI.	Location	OK*ER	$\left\lvert\, \begin{gathered} \text { APPROXYuTE } \\ A C E \\ \hline \end{gathered}\right.$	TYPE	$\begin{gathered} \text { TOYAL } \\ \text { DEPTH } \\ \text { (HETERS) } \end{gathered}$	$\begin{gathered} \text { DEPTH TO } \\ \text { MATER } \\ \text { MMERS) } \end{gathered}$	$\begin{gathered} \text { TYPE OF } \\ \text { PUT OR } \\ \text { METIOO } \end{gathered}$	$\begin{gathered} Y_{(1 / 5)}^{(1 / 5)} \end{gathered}$	usf,	AQGIFER	$\|$DATE OF   TNUEMTORY	Revarha
329.	$\begin{aligned} & 1.5 \mathrm{Km} \text { W of } \\ & \text { Aranan, Beit Al } \\ & \text { Tab } 1 \mathrm{lb} \text {. } \end{aligned}$	$\begin{aligned} & \text { Al Moh'd } \\ & \begin{array}{l} \text { Altabt (BIr } \\ \text { Atab } 1 \mathrm{~B}) \end{array} \end{aligned}$	v.old	Dug	27.7	22.5	$\begin{gathered} \mathrm{T} . \\ 25 \mathrm{~m} \end{gathered}$	8.5	D 20 A 2640	${ }_{\text {chasalt }}^{1.8 .8}$	9 Mar ' 76	SC=555 e $21.1^{\circ} \mathrm{C}$   HS: th/d, $7 \mathrm{~d} / \mathrm{w}$.   DS: $14 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}$.
330.	4 Ka E E of hwy ,Km 52, A1 Man-   $\mathrm{sa}{ }^{\prime} \mathrm{a}$ ares.		-	Dug	39.9*	35.1*	т.	-	-	-	17 0ct. ${ }^{\text {7 }} 75$	-
331.	500 m W of bwy, Km54, Beit Shabban village	$\begin{aligned} & A^{\prime} \text { Ad Senan } \\ & \text { (Bir Shabban }) \end{aligned}$	$\underset{\substack{\text { v.oold d }}}{ }$	Dug	$\begin{gathered} 36.0 * \\ \mathrm{Rpt}^{2} \end{gathered}$	-	\%.	5.2	¢ $\begin{gathered}\text { D } \\ \text { A } \\ 1760\end{gathered}$	${ }^{\text {all. }}$	27 Ju1.'75	SC=600 © $23.33^{\circ} \mathrm{C}$
332.	2 Km W of hwy, Km54, A1 Radin area.	$\begin{aligned} & \text { Abduilah Mos- } \\ & \text { leh Bediy } \\ & \text { (Bir Al Sabin } \end{aligned}$	$\underset{\text { d. } 4 \mathrm{x} .}{\text { old }} .$	Dug	51.6*	51.2*	т.	5.2	${ }_{\text {D }}$	All. 1.8.	3 Sep. 75	$\begin{aligned} & \mathrm{Sc} 550 @ 21.7^{\circ} \mathrm{C} \\ & \mathrm{P}: 1 \mathrm{in} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 5 \mathrm{~m} / \mathrm{y} . \end{aligned}$
88333.	Al Samrah, 500 m S of hwy, Kas4.	Saleh Jahet (Bir Al Samrah)	$\begin{aligned} & 1962 \\ & d .12 \mathrm{x} \end{aligned}$	Dug	73. 3*	41.9*	$\begin{gathered} 9 . \\ 39 m_{m} \end{gathered}$	-	${ }_{440}$	All.	12 Sep. 175	P: $5 \mathrm{~h} / \mathrm{d}, 78 / \mathrm{w}, 12 \mathrm{~d} / \mathrm{y}$.
334.		Senan Janil (Bir Mogny)	$\begin{array}{r} 1973 \\ \text { d. } .7 \mathrm{x} . \end{array}$	Dug	51.9*	45.7*	т.	11.5	${ }_{3080}^{\text {A }}$	Basalt	2 Sep. '75	$\mathrm{sc}-575$ @ $21.7^{\circ} \mathrm{C}$   wS: $2 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 2 \mathrm{~m} / \mathrm{y}$.   DS: $16 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 10 \mathrm{~m} / \mathrm{y}$
335.	$\begin{aligned} & \text { Al Thuber, } 300 \mathrm{~m} \\ & \mathrm{~N} \text { of } \mathrm{Km} 55,50 \mathrm{~m} \\ & \mathrm{E} \text { of hary. } \end{aligned}$	Haj Moh'd Nag Al Dobler (Bix Ai Dobier)	$\begin{aligned} & \mathrm{v} .01 \mathrm{~d} 1 \mathrm{~d} \\ & 0.6 \times \mathrm{x} \end{aligned}$	Dus	39.5 Rpt	-	$\underset{40 \mathrm{i}}{\mathrm{~T}}$	5.7	c $\begin{gathered}\text { D } \\ 150 \\ \text { A } \\ 2200\end{gathered}$	${ }^{\text {al1. }}$	5 Aug. '75	$\mathrm{sc}=625$ e $22.2^{\circ} \mathrm{C}$   WS: $6 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}, 6 \mathrm{~m} / \mathrm{y}$.   DS: 24h/d, $7 \mathrm{~d} / \mathrm{w}$.
336.	Al Mahjar, w of hwy, Km56, 2 Kr $S$ of Beit Al Haraq Village.	$\begin{aligned} & \left.\begin{array}{l} \text { Saleb Said Al } \\ \text { Yatim (Bir } \\ \text { Yal Mahjar) } \end{array} \right\rvert\, \end{aligned}$	$\begin{aligned} & 1964 . \\ & \text { d.a.x. } . \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Dug/Drinled } \\ \text { C.T. } \end{gathered}\right.$		64.4	${ }_{90 \mathrm{~m}}^{\mathrm{T}}$	-	$\begin{gathered} D \\ \text { D } \\ 528 \end{gathered}$	All.	$6 \mathrm{Mar} \cdot{ }^{76}$	jws:   DS: $4 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}$. Dug wel1 deepened by Ai Watary co.
337.	Jannat Area	(8ir al kbuza)	-	Dug	48.3	-	т.	5.2	-	-	4 Mar. 75 !	P: 12-24h/d.
338.	$\begin{aligned} & \text { Jannat, } 100 \mathrm{~m} \\ & \text { SE of Bix AI } \\ & \text { Jadid. } \end{aligned}$	$\begin{aligned} & \text { (Bir Al } \\ & \text { Raynani) } \end{aligned}$	old	Dug	27.7	21.9	т.	-	-	-	${ }^{2}$ Jul. 75	P $\mathrm{sh} / \mathrm{d}$.



TABLE 5.--idell inventory data, Aaran Valtey, Yemen Arab Republic - Cont inued

WELL.	location	onser		TYe	$\left[\begin{array}{c} \text { 107A } \\ \text { DEPTV11 } \\ \text { (GETERS) } \end{array}\right.$	$\begin{aligned} & \text { OPTIH TO } \\ & \text { WATER } \\ & \text { OETERS) } \end{aligned}$	$\begin{aligned} & \text { TYPR of of } \\ & \text { PInTr or } \\ & \text { MFTIOD } \end{aligned}$	$\left\{\begin{array}{l} 1 \mathrm{YPRLO} \\ (1 / s) \\ \mid \end{array}\right.$	USE	Aamifer	DITE OF inventory	remarks
359.	750m NW of $81 x$ Al Samri, SW of Bir Bakir Amran Town	$\underset{\text { Hussein Ale }}{\text { (Gir Al Jadiox) }}$	1965	Dug	$\begin{gathered} \substack{1,3 \\ R p t} \end{gathered}$	$\begin{array}{r} 28.3 \\ \mathrm{Rpt} \end{array}$	T.	-	-	Loam	2 Jul. '75	$\begin{aligned} & \mathrm{sC}=520 \mathrm{C} 23.3^{\circ} \mathrm{C} \\ & \mathrm{P}: 6 \mathrm{~h} / \mathrm{d} . \end{aligned}$
360.	$\begin{aligned} & 35 \mathrm{~m} \mathbf{E} \text { of } \mathrm{hwy}, \\ & \mathrm{Km} \mathrm{~m} 50.5 \end{aligned}$	$\left\|\begin{array}{ll} A_{1 i} & z_{a i t}(B i r \\ A_{1 i} \\ \left.z_{a i t}\right) \end{array}\right\|$	oid	Dug,	-		-	-	-	-		
361.	Ash Shauk Dhaifan, A1 Ghola, Beft Agebad Wa'ala	$\begin{aligned} & \text { Mohsin Soleh } \\ & \text { Ahmed } \end{aligned}$	1971	Dug	37.7	31.1	т.	-	-	-	31 Oct. 77	P: 7h/d.
362.	USAID/025   Jannat, next to Jannat weils.	Government (Bir Iraqi: Jannat)	1971	$\begin{gathered} \text { Drilled } \\ \text { C.T. } \end{gathered}$								Drilled by Ministry \|of Public Works. Rural Water Dept.
$\overbrace{}^{363 .}$	A1 Makaser, 6 km $S$ of Amran, Majer village.	$\begin{aligned} & \text { Kaid A1 } \\ & \text { Harad } \end{aligned}$	$\begin{gathered} 1970 \\ \mathrm{~d}, \mathrm{~m} \cdot \mathrm{x} \end{gathered}$	Dug	-	-	$\underset{22.5_{\mathrm{m}}}{\mathrm{~T}}$	-	c $\begin{gathered}\text { D } \\ 200 \\ \text { A } \\ 3520\end{gathered}$	${ }^{\text {all }}$.	1975	$\begin{aligned} & \text { sc= } 780 \text { a } 21 . .^{\circ} \mathrm{C} \\ & \text { ws } 23 \mathrm{~h} / \mathrm{d}, \mathrm{~d} / \mathrm{w}, 3 \mathrm{~m} / \mathrm{y} . \\ & \mathrm{ws}: 4 \mathrm{~h} / \mathrm{d} . \end{aligned}$
364.	2 Km Kw of Amren 20m Naf Najer Village	Cooperative (Bir Azilatali)	$\begin{aligned} & \text { v.old } \\ & \text { d.ux. } . \end{aligned}$	Dug	29.8	21.9	$32.5_{m}$	13.6	D S A 220	-	7 Mar . ${ }^{\text {76 }}$	$50-520$ \& $21.1^{\circ} \mathrm{C}$   WS: $3 \mathrm{sh} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w}$.   DS: 2h/d,7d/w.
365.	Najer, Sof Amiran city.	Beit Abdullah Cerodah)	$\begin{gathered} \text { old } \\ d .1 \times x . \end{gathered}$	Dug	17.9	None	None	-	D	-	30 Jul .175	The well has not been used aince 1965, no water/
366.	Najer, 5 Km S of Amran.	Beit Dahnan (Bir Adar)	$\begin{aligned} & \mathrm{v.01d} \\ & \mathrm{~d} \cdot \mathrm{~m} \cdot \mathrm{x} . \end{aligned}$	Bus	24.3	$\begin{gathered} 15.7 \\ \text { Dyn } \end{gathered}$	$\underset{22 \mathrm{~m}}{\mathrm{~T} .}$	7.6	$\begin{gathered} D \\ 500 \\ A \\ 44000 \end{gathered}$	${ }^{\text {ali }}$.	\% Mar. ${ }^{\text {P }} 7$	$\mathrm{SC}=44021.1^{\circ} \mathrm{C}$ $\mathrm{p}: 10 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{w} .$
367.	Najer, 2Km SW of Amran.	Cooperative (Bir Etaela)	$\begin{aligned} & \text { v.old } \\ & \text { d,m,x. } \end{aligned}$	Dug	32.3	28.7	$\begin{gathered} \mathrm{T} . \\ 30 \mathrm{~m} \end{gathered}$	13.6	$\begin{array}{\|c\|c\|} \hline \\ 1000 \end{array}$	$\begin{aligned} & \text { Al1, } \\ & \text { Basalt } \end{aligned}$	7 Mar .176	$\begin{aligned} & \mathrm{SC}=380 \text { @ } 21.11^{\circ} \mathrm{C} \\ & \mathrm{P}: 6 \mathrm{~h} / \mathrm{d}, 7 \mathrm{~d} / \mathrm{u} . \end{aligned}$
368.	Al Hawied, 500 m S of Amran $L$ 150 m w of Arny Camp.	$\begin{aligned} & \text { Senan moh'd } \\ & \text { Al Sar (Bir } \\ & \text { Al Ward) } \end{aligned}$	v.old	Dag	34.0*	11.7*	-	-	-	-	18 Aug.' 75	The well is not used very often because it dries during dry season, \& only little water in wet season.


TABLE 5 ,--illl inveatury data, Aaran Valley, Yemen Arab kepmblic - Continued

P:1. 1	memalion	-6ar		TYP:		$\begin{aligned} & \text { nepram } \\ & \text { LATER } \\ & \text { (atrent } \end{aligned}$		$\begin{aligned} & \text { Yua, } \\ & (1 / s) \end{aligned}$	usE	hauter	$\underset{\text { SNEEMTORY }}{ }$	remarss
37\%.	Al Hiaz, 4 促m W of Amran, 25 man N of afta village.	At has Moh'd Afia (Bir A1 таlla)	v.old	Dug	23.0*	21.5*	$\stackrel{\mathrm{T} .}{\text { mot used }}$	-	-	-		The well is not used
379.		Ali Mokbil (Bir ínulad)	v.old	Dug	38.7*	3.5*	${ }^{\text {36m }}$.	4.0	${ }_{\text {D }}$	Al1.8	$\mid 13 \mathrm{JuI} .75 \mathrm{~S}_{\text {Pa }}$	$\begin{aligned} & s C=490 \text { e } 21.1^{\circ} \mathrm{C} \\ & \mathrm{P}: 12-24 \mathrm{~h} / \mathrm{d} . \end{aligned}$
3R0.	M1 MJaz, 4 Kn W of Amtam, $1 . \mathrm{Km}$ E. of Hyaz nisatit well.		$\begin{aligned} & 1973 . \\ & \text { n. } .4 . \end{aligned}$	Dug	$\underset{R g t}{40.0}$	-	T. 34 m	8.5	$\begin{gathered} \text { D } \\ 2000 \\ \text { A } \\ 3080 \end{gathered}$	01.	21 Mar. 76	$\begin{aligned} & \mathrm{sC}=490 \text { @ } 22.2^{\circ} \mathrm{C} \\ & \text { ws n. } \\ & \text { ws: } 14 \mathrm{~h} / \mathrm{d} . \end{aligned}$
381.	3 Km w of Amran   l0n X of Haj-   fah Road.	Ha. Moh'd   la'dan (aic   AI Matar)	$\begin{array}{r} 1963 \\ \text { d.n.x. } \end{array}$	Dug	32.5	99.3	$\stackrel{\mathrm{r}}{\mathbf{3 1} .75 \mathrm{~m}}$	6.8	$\text { [ } \begin{gathered} D \\ 10 \\ A \\ 1320 \end{gathered}$	${ }_{\text {All }}^{\text {Als. }}$	29 Dec .79	$\begin{aligned} & \mathrm{Sc}=480 \text { a } 20.5^{\circ} \mathrm{C} \\ & \mathrm{HS}: 4 \mathrm{hh} / \mathrm{d} . \\ & \mathrm{DS}: 12 \mathrm{~h} / \mathrm{d} . \end{aligned}$
品382.	$353 n \mathrm{NW}$ of Iraqi well Amran town.	$\begin{aligned} & \text { Shaikh Sitatin } \\ & \text { Al Sa }{ }^{\prime} \text { ad } \\ & \text { (Pir } \left.\mathrm{Sa}^{\prime} \mathrm{ad}\right) \end{aligned}$	v.old	Dug	43.7	41.6 Dyn	т.	-	-	$\begin{aligned} & \text { All. } \\ & \text { jcalcrete } \end{aligned}$	1 Jui. 79	P: 12-24h/d.
383.	$\begin{aligned} & \text { KKm Sh of } \\ & \text { Amran, N side } \\ & \text { of Al Hjaz Vili. } \end{aligned}$	$\underset{\text { cooperative }}{\text { (nir A1 Hjaz) }}$	oct. '76	$\underset{\mathrm{R}}{\text { Drilled }}$	221.1	(33.8)*	50\%	7.6	${ }_{30}$	$1 . \mathrm{s}$.		Drilled by USAID/025 Pump installatiph Ruzal water Dept. Watet Sample 121912
384.	Sw side of Antan town.	Cooperative (Sit Amran)	Jan. '76	$\underset{R}{\text { Drilled }}$	34.3 .1	37.8*	т.	-	$n$	: A11.8	18 Jan. 76	Drilled by USAID/025 Pump installation by Rural Water tept.
385.	$\begin{aligned} & \text { Najer, } 5 \text { or } \\ & \text { Amran } \end{aligned}$	Abdullah   Jaharah	$\begin{aligned} & \text { v.old } \\ & d .3 \mathrm{x} . \end{aligned}$	Dug	27.0*	15.9*	т.	-	$\begin{gathered} 1 \\ 150 \\ A \end{gathered}$	A11.	3 Aug. ${ }^{\text {a }}$ '	$\mathrm{p}: 12-24 \mathrm{~h} / \mathrm{d}$.
386.	Wadi Thaean, 00n Sk of Bix A1 7afram, 10 Kmi SE of Amrian com,	Cooperative (Bir 8ieda)	$\begin{aligned} & \text { v.old } \\ & \text { d. } 1 . \end{aligned}$	Dug	13.6	5.4	-	-	0	A11.	29 Ju1. 75	Used by a few people for driaking water only.

TABLE 5.--Hell inventory data, maran Yalley, Yenen Arab Republic - Continued

.ELL *	L,OCAT10:		$\left\|\begin{array}{c} \text { AProxisute } \\ \text { Acte } \end{array}\right\|$	TVI:		$\begin{aligned} & \text { DEPTB YO } \\ & \text { WATER } \\ & \text { (MEHBS) } \end{aligned}$		$\begin{array}{\|l\|l} \hline 103.0 \\ (1 / \mathrm{s}) \end{array}$	UsE	mphteer	bare of [nveytory	remakts
387.	Wadi Theean	Hussein Al   Raseent   (Bir Blaisenah)	v.old	Dus	11.2	-	T.	6.8	$\begin{gathered} \mathrm{D} \\ \mathrm{~A} \\ 3080 \end{gathered}$	111.	$29 \mathrm{Ju} 1.755_{\mathrm{H}}^{5}$	$5 C=500$ - $21.1^{\circ} \mathrm{C}$ HS: 12-24h/d. DS : $\frac{1}{4}-24 \mathrm{~h} / \mathrm{d}$.
388.	Hadi Thaean, 200m s of Bir A1 Rakwah.	$\begin{aligned} & \text { Ali Yahya } \\ & \text { Harir } \\ & \text { (Bir 7a'fran) } \end{aligned}$	v.old	Dug	10.8	3.5	$\stackrel{\text { T. }}{10 \mathrm{~m}}$	-	$\begin{array}{\|c\|} D \\ 1000 \\ A \end{array}$	${ }^{\text {A11. }}$	$\text { 29 Jol. } 75$	WS: $6 \mathrm{~h} / \mathrm{d}$.   DS: th/d,
389.	$\begin{aligned} & \text { Wadi Thaean, } \\ & \text { 30u } \mathrm{of} \text { of } \\ & \text { Thaean village.! } \end{aligned}$	$\begin{aligned} & \text { Cooperative } \\ & \text { (Chail Al } \\ & !\text { Majik) } \end{aligned}$	- -	$\left.\begin{gathered} \text { spring,w/ } \\ \text { developed } \\ \text { catch bastn } \end{gathered} \right\rvert\,$	-	-	-	0.02	A	$1 . \mathrm{s}$.	30 Jul .175	$\mathrm{SO}=32020.0^{\circ} \mathrm{C}$ Flow is seasonal.
390.	Wadi Thaean, Dalah village. Wadi A1 Shogain.	Coonerative   (Bir Al   Shogain)	1965	Dug	18.0	Trace	None	-	-	1.s.	$130 \text { JuI. } 75$	Abandoned dug well.
$\curvearrowleft^{391 .}$	I Wadi Thaean   S of Aman	$\begin{aligned} & \text { Shaikh Ali } \\ & \text { Hussein Sinah } \\ & \text { (Bir Ahwal) } \end{aligned}$		Toug	18.0*	4.3*	$\stackrel{\text { r. }}{\text { T. }}$	-	( $\begin{gathered}\text { D } \\ 1000 \\ A \\ 1100\end{gathered}$	${ }^{\text {A11. }}$	29 Jul .75	$\begin{aligned} & \text { sc-5000 } 18.9^{\circ} \mathrm{c} \mathrm{c} \\ & \mathrm{ws}: 12 \mathrm{~h} / \mathrm{d} . \\ & \mathrm{ps}: 3 \mathrm{~h} / \mathrm{d} . \end{aligned}$
392.	Madi Thaean $100 \mathrm{~m} \varepsilon$ of Road, Beit Sinah	Haj Hussein Al Resin (Bir AI Rekwah)	v.old d.m.x.	Dug	24.4*	-	$\begin{gathered} 7 . \\ 24 \mathrm{~m} \end{gathered}$	6.8	D	-	$i^{29 \mathrm{Ju} .}{ }^{\prime 75}$	$\begin{aligned} & \mathrm{sC}=500-20.5^{\circ} \mathrm{C} \\ & \mathrm{WS}=12-24 \mathrm{~h} / \mathrm{d} . \\ & \text { DS: } \mathrm{ym} / \mathrm{d} . \end{aligned}$
393.	Wadi Thaean, Beit al Raidain	$\begin{aligned} & \text { Cooperative } \\ & \text { (B1r Al } \\ & \text { Haidain) } \end{aligned}$	1972 n.d.	Dug	9.8	6.5	None	-	-	1.s.	$j^{30} \text { Ju1. } 75$	Reported not used because of collapsing at botton.
394.	Wadt Thaean, Sufal al Wadi	Hussein Saleh SInah (Bir Hewa1)	$\begin{aligned} & \text { v.01d } \\ & d .2 \times x . \end{aligned}$	Toug	19.0	5.6	T.	-	$\begin{gathered} D \\ 1000 \\ A \\ 3080 \end{gathered}$	Fine Sand	27 Sep. 77	$\begin{aligned} & \mathrm{SC}=580 @ 18.3^{\circ} \mathrm{C} \\ & \mathrm{p}: 12 \mathrm{~h} / \mathrm{s}, 7 / 7 / \mathrm{c} / \mathrm{c} \\ & \text { Water Sample } 121911 \end{aligned}$
395.	2Kn S of Amran	$\begin{aligned} & \text { Ali Mojeli } \\ & \text { (Bir Chulab) } \end{aligned}$	v.01d	Dug	$\underset{\text { Rpt }}{27.0}$	$\underset{\text { Dyo }}{11.4}$	$\begin{gathered} \mathrm{T} \\ 20 \mathrm{~m} \end{gathered}$	13.6	$\underset{2640}{A}$	-	$22 \mathrm{Mar} .{ }^{\prime} 76$	

The driller's logs which are included in this report are coptes of logs on file with the Hydrology Section of the Mineral and Petroleum Authority in San'a'. The units of measurement for the wells are inches and feet, following the practice of the Drilling Section of the joint Yemen Arab Republic-USAID drilling project. When a measurement from a $\log$ is used in the text is is converted to its metric equivalent.

TABLE 6.--Driller's logs, Amran Valley, Yemen Arab Republic.


TABLE 6.--Driller's logs, Amran Valley, Yemen Arab Republic - Continued



TABLE 6.--Driller's logs, Amran Valley, Yemen Arab Republic - Continued
siteimran city.
HGG OF S.cht
Stesi ${ }^{1}$ of 1.
The well is located on the west side of
 $\qquad$ Fied no $\qquad$ $-$

Office No.n $\qquad$

 thers. Pt beico 3, S, D, Elev, Ground - Ft, Yield $\qquad$ Drandoxyt $\qquad$ S.P. \& Resistivity, Density G.C.Tíbbitts
 ... K . Nlis tio.. S_Gzophyoieal LogNatural Ganma $\qquad$ 3y. \&_It Aubel


TABLE 6,--Driller's logs, Amran Valley, Yemen Arab Republic - Continued


TABLE 6.--Driller's logs, Amran Valley, Yemen Arab Republic - Continued




TABLE 5.--Driller's logs, Anran Valley, Yemen Arab Republic - Continued


TABLE 6.--Driller's logs, Amran Val?ey, Yemen Arab Republic - Continued


TABLE 6.-HDriller's logs, Amran Valley, Yemen Arab Republic - Continued


Dri.1'R.R. Banasijansig No., 5 . Gzophymical LogGama, Density, Caliper, By, Aubel Schlueter
Demptes uesuribad By
. Bete.
...OEber inta


TABLE 6.--Driller's logs, Amran Valley, Yemen Arab Republic - Continued





107




sixe. Ruydah Madle A?
About 1 Km E of Km 66, Sana- Sa Cdah Iwv.


```
offlee How...
```



```
 May 175
 Nov 176
```






Site Raydah Middle \#3
About 1 Km east of Km marker, Sana- $\mathrm{S}^{4}$ ( amh


rotal thapt! $\quad 545 \ldots$

timulat, ornatily Odalnt,

Samplea Vescritien tre.
$\cdot \cdots$,



TABLE 6..-Driller's logs, Amran Valley, Yemen Aral Republic - Continued








$\because$ Driller repotts no traces of water found.
$23 \boldsymbol{S H}^{2}+265^{\circ}$ Lime: stone, very hard; ; used hard formu ation bit with 500 lbs . hydraum. lic pulldown, the speed wor 1 foot: per 37 minutes.

No casing me
installed.
$i$
$\vdots$
$\vdots$
$\vdots$
$\vdots$


```
3: Kharif \(\$ 1, \# 2, \# 3, \# 4, \# 7\)
```

LOG OF
shaci ...1...
 $\qquad$

 ${ }_{3}$ H
B. above

Fr. Scatic f, Insel_mention
$\qquad$
$\qquad$ hasalow.

## Bourgoin

Drilioz Godshal2 , sisg Ho -..... ©nophysical log none .By




Stbic. Kharif \#5...
L.OS Op maz.

Sheri_1...ese. .
 $\qquad$
 $\qquad$
 M, above ${ }^{2}$
$\qquad$ Ft - belce $\mathrm{I}_{4} \mathrm{~S}_{4} \mathrm{D}_{5}$, Elev, Eround $\qquad$ Ft. Yield $\qquad$ Drandomat $\qquad$
Driller. Bourgoin ...itig No ........ Geophyaical Lagnnone $\qquad$ 3y $\qquad$
 Pump Lata: bepth.......F2; Rated

$\because$ ta Kharif $f f$
LOG OF WALE,

Project 025 , lotaiticn. About 2 Km northeast of Raydab, Amrān Velleyicid nc. -.............

 to L.S. mons. © Etev. Ground $\qquad$ Ft. Yiold $\qquad$ Drandown $\qquad$
 By

Sniephte thescribed By. .............. Rnted
Deta
. other Dace-Productrons. Went


Siti. Al Sheikh (Km. 72) About 3 Km west of Km 72 marker on the
seta … 1-2.f.1
Fibita, -...........
vefict. *)...

```
Rotary...
```


 $\therefore$ Hinve N .
 $\qquad$ - "irntučom.

Oxilian. He. Nagi ....Aíg Nuan. 2 czophyoical Log. $\qquad$
$\qquad$
Shtaf: Bescribed By. M.L. Eryani Detc. Oct .76. Ukher Data. Hydrogeologic testhole.


TABLE 6.--Driller's logs, Amran Valley, Yemen Arab Republic - Continued



[^1]TABLE 6.--Driller's logs, Amran Valley, Yemert Arab Republic - Continued


All analyses were performed by the U.S. Geological Survey's Central Laboratory, Atlanta, Georgla.

Lab ID number is shown in the remarks column of well inventory table 5. Well numbers of table 5 are given here in the sample location entry.

TABLE 7．－－Chemical analyses of ground water in Amran Valley，Yemen Arab Republic


$\text { - } \min _{n} \underset{n}{n}$
$\frac{3}{2} \sim \dot{B}$


GAMPIE LOCATION：AIムC MENJDAR UCAID YFLL \＃？

COEFTY CODF：$\quad$－RG．jECY DDEMTIFICATION：
SATA TYロF：


MOTASSIUM inES MOA
HFSLi）UF HIS CALC SUM MGA．

$\stackrel{\text { ぶ }}{\stackrel{1}{5}}$
き
gat zonvigngivoj ens
7on－SSIC تivjins
ANIONS

TOTAL．

SAL
SOII！M DISS
S（）IIUM PELCFAT


C．T10ns


TOTAL


WEUCFN1 OIFFERENCE＝
TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued WATER MUALITY ANALYSIS
LAB IN $\# 121902$ RECORD $\# 6843$
SAMPLE LOCATION: \#195 BIR SHEBARI
$\begin{array}{lll}\text { STATION ID: } 99999909 \text { LAT.LONG. SER.: NONF GIVEN } \\ \text { NATE OF COLIECTION: BEGIN--770904 FNO-- } & \text { TIME--0001 }\end{array}$
COUNTY CODE: PROJECT IOENTIFICATTON:
COUNTY CODE: SOUPCE: GROUND WATER GATA TYPE: 2 G SOLOGIC INIT: BASALT
COMMFNTS: OMMFNTS.


TABLE /.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued


НERCENT OIFFERENCE $=0.01$
TOTAL
$4 \cdot 252$
TABLE 7. --Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued

TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued


ANIONS
1
TOTAL

$$
\begin{aligned}
& \text { (MG/L) } \\
& 140 \\
& 29 \\
& 41 \\
& 5.6
\end{aligned}
$$

TOTAL

$$
\begin{gathered}
\text { WATER QUALITY ANALYSIS } \\
\text { LAR IN H } 121905 \text { RECORD } \# 6849
\end{gathered}
$$

DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: ALLUVIUM
COMMFNTS:

RESIDUE DIS CALC SUM MG/L RESIDUE OIS TON/AFT
RESIDUE DIS 180 C
$8^{\circ} 2$
$0 \circ 8$
$9^{\circ} \mathrm{S}$
61
$0 \angle 1$
15
62
$5 E$
$0 \div 1$
011
$M G / L$

## ALK.TOT (AS CACO3) RICARAONATE

BICARBONATES
CHLORIDE DISS
HARDNESS NONCARE
HARONESS TOTAL
MAGNESIUM DISS
pOTASSIUM DISS

CATIONS


$-4 \cdot 338$
BICARBONATE
CHLORIDE DISS
SULFATE DISS
NO2+NO3 AS N O

PERCENT DIFFERENCE $=-0.32$
TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued

TOTAL - 5.212

PERCENT DIFFERENCE $=1.48$

CALCIUM DISS
MAFNESIUM DISS
POTASSIUM DISS
CODIUM DISS
(MG/L)
68
22
2.6
6.398

TOTAL
AL.K.TOT (AS CACO3) MG/L
CICIUM DISS
CHLORIDE DISS MG/L
HARDNESS TOTAL
$7 / 9 \mathrm{~W}$
POTASSIUM DISS
Cations
FABLE 7．－Chemical analyses of ground water in Amran Valley，Yemen Arab Republic－Continued



S［1） 19	נ15	CALC Sum	Mrst．
RESTHJF	D14	TOM／AFT	
2ESI1月积	uls	180C	$\cdots 3 / 2$
？			
ICA	IS	E．9	

210
260
100
39
180
400
36
8.0
3.7
$7 / 9 w$
$7 / 9 w$
$7 / 96$
$1 / 9 w$
$1 / 5 w$
$1 / 96$
$7 / 9 w$
$7 / 9 w$
Cattins
$(m i n / 2)$
100
36
3.7
31
ALK．TOT（AS CACO3）
CALCIUM NISS
HA＿ODIDF DICS
HARINESS TOTAL
us Gevtsilfin of Sa
OOTASSIUM DISS
CALCIUM NISS

OTASSTUM OTSC
GOMIUM DISS

SAMPLE LOCATION：\＃341 BIR AL－KARAB
GTATION ID：
$4 y 999999 \quad 1 A$
LAS $川$ \＃ 121907 KECORD $\#$ nタb 3


TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued

TABLE 7.--Chemical analyses of ground water in Amran Yalley, Yemen Arab Republic - Continued


TOTAL
SAMPLE LOCATION: \#204 RAYDAH MIDDLE
GTATION ID: $99999999 \quad 1 A T . L O N G . S F!.: ~ * N O N F ~ G I V E N ~$
nATE OF COLLECYION: HEGIN- 7ROZn7 ENO-- TIMF--6HOL
COURTY CODF: SOMROJECT IOENTIFICATION: GEOLOGIC UNIT: BASALT
DATA TYPF:
COMAFNTS:
RESIME OIS CAICC SUM BNILL RESIDUE DIS TON/AFT
RESIDIE OIS IROC 130
160
50
39
26
32
160
16
8.3
2.1 WIOAS
$(M G / L)$
164
26
34

TITAL
TOTAL
ALK.TOT (AS CACOZ) $\quad$ AG/L
$M G / L$
$U G / L$
$M G / L$
MG/
MG/R
C.TTHNS
(MFO/1)
1.947 SICANQONATE
1.317 CHLODIOE DICS
0.044 SIUFATE IISG
1.044
$--\frac{-3.350}{4.35}$
SERCEVT DIFFEQENCE $=$
TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued






RESIDUE DIS CALC SUM MG/L $\begin{array}{lll}\text { RESIDUE DIS CALC SUM MG/L } \\ \text { RESIDUE DIS TON/AFT } & \text { MG/L } \\ \text { RESIDUE DIS IBOC } & \text { MG/L } \\ \text { SAR } & \\ \text { SILICA DISSOLVED } & \text { MG } L \\ \text { SOOIIMM DISS } & \text { MG } \\ \text { SODIUM PERCENT } & \\ \text { SP. CONDUCTACE FLD } & \\ \text { SP. CONDUCTANCE LAB } & \\ \text { SULFATE DISS } & \text { MG/L }\end{array}$


$\left\lvert\, \begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}\right.$ GER OLT ANIONS
(MG/L)
300
23
25

## 008 092 68 23 <br> ~O <br> が・

$7 / 9 \mathrm{~W}$

ALK.TOT (AS CACO3)
AICARBONATE
CALCIUM DISS
CHLIRIDE DNONESS NONCARB
haroness total
PH LAB
POTASSIUM DISS

CATIONS


5

$296^{\circ} \mathrm{S}$
$\angle 56^{\circ} 0$
$6 \rightarrow 0^{\circ} 0$
$\varepsilon 95^{\circ} 1$
$76 E^{\circ} \varepsilon$
$\left(1 / 0^{\circ} \mathrm{JW}\right)$
TOTAL
dercent oifference =
TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued

$$
\begin{gathered}
\text { IUTFR IIIALITY ANALYSIS } \\
\text { LAH TO } \# 12191 ? ~ W E C O R O: ~ G H 63
\end{gathered}
$$



NATE OF COL
COUNTY CODF:
OATA TYOF: 2 SOUMEE: GOOIONO GATFM




TOTAI
DEOCEGT DIFFELENCE $=2.12$


TOTML -- 23.0 Tl C..TIniss
$(\mathrm{min})$
270
45
5.5
55

ATIOt.4
$(M G / 1$.
216
34
85.
「

[^2]TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued LaH WATER MEALITY ANALYCIS




76101

TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued

WATFR OUALITY ANALYSIS   LAB In \# 121914 RECORO \# 6867							
SAMPLE LOCATION: \#198 BIR AL-QA							
COUNTY CODE: PROJECT IDENTIFICATION: TIME--000?							
DATA TYPE: 2 SOURCE: GROIJND WATER GEOLOGIC UNIT: ALLUVIUMCOMMENTS:							
ALK,TOT (AS CACO3) MG/L		130	Residue dis cal	C Sum	MG/L	334	
alk,TOT (AS CACO3) hicarbonate	MG/L	160	RESIDUE DIS TON			$0.5 \bar{c}$	
	MG/L	57	RESIDUE DIS 180		MG/L	379	
CALCIUM DISS CHLDRIDE DISS	MG/L	46	SAR			0.7	
	MG/L	98	Silica dissolve		MG/L	25	
HARDNESS NONCARB HARDNESS TOTAL	MG/L	230	SODIUM DISS		MG/L	26	
	MG/L	21	SODIUM PERCENT			20	
MAGNESIUM DISS   PH LAB		8.0	SP. CONDUCTANCE	FLD		560	
POTASSIUM DISS	MG/L.	2.2	SP. CONDUCTANCE	LAB		577	
			SULFATE DISS		$M G / L$	78	
CATIONS			ANIONS				
CALCIUM DISS (MG/L)		(MEQ/L)2.845					
		bicargonate	160		2.623		
CALCIUM DISS MAGNESIUM DISS	21		1.728	Chloride diss	46		1.298
POTASSIUM DISS	2.2	0.057	Sulfate diss	78		1.624	
SODIUM Diss	26	1.131				1.624	
	тот	5.759			tot	5.544	

TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued


326
0.51
376
0.7
20
24
18
542
599
48




MG/L

TABLE 7.--Chemical analyses of ground water in Amran Valley, Yemen Arab Republic - Continued WATER QUALITY ANALYSIS
LAS IO $\# 121916$ RECORD $\# 6871$
SAMPLE LOCATION: \#8 MOBKHAT SALEH AL BRARI
STATION ID: 99999999 LAT.LONG. SE DATE OF COLLECTION: REGIN--77092S END*-
COISNTY CODE: PROJECT IDENTIFICATION:
ПATA TYPE: $? ~ S O U R C E: ~ G R O I N D ~ W A T E R ~ G E O L O G I C ~ U N I T: ~ A L L U V I U M ~$
COMMENTS:
$\begin{array}{ll}\text { POTASSIUM DISS } & \text { MG/L } \\ \text { RESIDUE DIS CALC SUM } & \text { MG } \\ \text { RESIDUE DIS TON/AFT } & \\ \text { RESIDUE DIS IAOC } & \mathrm{MG} / \mathrm{L} \\ \text { SAR } & \\ \text { SILICA DISSOLVED } & \mathrm{MG} / \mathrm{L} \\ \text { SOOIUM DISS } & \mathrm{MG} / \mathrm{L} \\ \text { SODIUM PERCENT } & \\ \text { SP. CONDUCTANCF LAB } & \\ \text { SULFATE DISS } & \mathrm{MG} / \mathrm{L}\end{array}$
$\begin{array}{lc} & \text { ANIONS } \\ & \text { (MG/L) } \\ & \\ & 120 \\ \text { BICARBONATE } & 30 \\ \text { CHLORIDE DISS } & 30 \\ \text { SULFATE OISS } & 12\end{array}$
total


## 

PERCEMT DIFFERENCE $=1.74$
3) $\begin{array}{r}M G / L \\ M G / L\end{array}$

TOTAL -- 4.447
 TOTAL



A-Index map of 1500000
of the *Anceñ Valley


For geologic explanation
refer to plete


piats 1-map showivg weil iocaitons, ground water contours, and geoidog in
explanarton*
Qal ${ }_{4}$ Alluvial gravel, silts, clays, Alluvial gravel, silts, clays,
loess, deposits, may include loess, deposits, may
colluvium, cultivated

Lossial gravel, very sandy,
polder than Qal 4 , not cultivated Qus scattered cones and craters;
at places covered with turf and
volcanic bombs. Divided regind volcanic bombs. Dividied region-
ally into four sub-units Q $\mathbb{Q}_{4}$, very dark basaltic lobste
a3, dark basaltic fiows
Q $Q_{2}$, thin basalt flows
tinuous over older rocks
Qa, appear lighter-grey tinuous mantie over older
rocks
Contact uncertain between Qa and $2 A$ in the area of
$15^{\circ} 461-444^{\circ} 08$ ?Tawilah Group and Medj-zir Series, andivided--Continental type coarses
crossbeded sandistone with lenses crossbedided sandstone with lenses
of conglomerate and gravel; inter-
hedded bedded shale and sandstone in low-
er parts; overlies rocks of Jurrassic age
Amran Series--Limestone, marl, and shate, lower part local11 inciudes
detrita1 beds. The series is detrital beds. The series is ove
lain by a less wide Upper Jurassi transition zone of gypsum, elay,
mar1, shale, sandstone and some marl, shale, sandstone and some
limestone of Callovian and Kimmeridgian age
(142。*Menjidah, $\# 1,2$ Well with name and number. *Menjith nahe $\# 1$, and null number. name, or
name with number, inventor 142 - well identification num-
${ }_{420} *$ *Menjidah, $\begin{gathered}\text { Water samp1e, with number of samp1 } \\ \# 1,2 \\ \text { Number referred to in well tables }\end{gathered}$
-60-

$-60-1$| Dep |
| :---: |
| tou |
| val | tours generalized. in. Contour interApproximate locatio ventory. Number referred to in

well the tal
${ }^{198} \stackrel{\text { Menjidah }}{\text { Rai }}$ Rain gage, with name and number (well identification number).
Number referrece to in well tables Volcanic cone
 Populated area, village, with name Road, all weather, hard surface
Road, all weather, loose surface *Geologic explanation adapted from
"Preliminary geologic map of North "Preliminary geologic map of Nor
Yemen, Groine and overstreet,
U.S.G.S. Open Fine Report $76-741$ Names preceded with asterisk(*) are
not verified names of the U.S. Board on Geographic Names


[^0]:    All population figures are based on the Housing and population Census of 1975, as shown in Volume No. 5: "Data Bank of the population Census 1975," by the Swiss Technical Comperation Service.

[^1]:    
    
    

[^2]:    bSde wfiloivo sSI (i whis JNJVn DOTASSTHM OTSC
    SOHTUM DISS

