UNITED NATIONS DEVELOPMENT PROGRAMME OFFICE FOR PROJECT SERVICES

.

.

.

YEMEN REPUBLIC MINISTRY OF AGRICULTURE & WATER RESOURCES SANA'A, SA'DAH AND HAJJAH AGRICULTURAL & RURAL DEVELOPMENT AUTHORITY (SSHARDA)

NORTHERN REGION AGRICULTURAL DEVELOPMENT PROJECT TECHNICAL ASSISTANCE FOR ENGINEERING SERVICES YEM/87/015

GROUNDWATER RESOURCES AND USE IN THE ATTAF PLAIN

> Final Report July 1993

> > 0.00

DHV CONSULTANTS by in association with TEAM CONSULTING ENGINEERS CO. LTD DARWISH CONSULTING ENGINEERS

CONTENTS

		Page
1.	INTRODUCTION	1
2.	PHYSICAL SETTING	3
	2.1 Location and Topography	3 3
	2.2 Climate	3
3.	GEOLOGY AND HYDROGEOLOGY	
	3.1 Geology	9
	3.1.1 Tectonics	9 9
	3.1.2 The Quaternary Volcanics	9
	3.1.3 The Quarternary Alluvium	9
	3.2 Aquifer Systems	13
	3.2.1 Alluvium	13
	3.2.2 Bedrock	13
	3.3 Aquifer Parameters	15
4.	GROUNDWATER GENERAL	17
	4.1 Distribution of Wells	· 17
	4.2 Number of Wells	17
	4.3 Well Characteristics	20
	4.4 Water Column Heights	21
	4.5 Pumping Equipment	21
	4.6 Well Yields	22
	4.7 Costs of Well Construction and Pumping Equipment	23
	4.8 Pumping Schedules	25
	4.9 Groundwater Abstraction	27
	4.10 Depth to Groundwater	29
	4.11 Groundwater Piezometric Level	29
	4.12 Lowering Groundwater Levels	33
	4.13 Groundwater Quality	33
	4.14 Groundwater Temperature	36
5.	GROUNDWATER USE	39
	5.1 Land Areas	39
	5.2 Crops	41
	5.3 Irrigation Practice	44
	5.4 Use of Fertilizers	44
	5.5 Domestic Water Use	44
	5.6 Irrigation Water Applied	46
6.	THE COST OF PUMPING GROUNDWATER	49
7.	SUMMARY AND CONCLUSIONS	53
	REFERENCES	59

TABLE	S	10
3.1	Geological Formations and their Hydrologeological characteristics	12
4.1	Volumes of Groundwater Abstracted During the Seasons	27
5.1	Breakdown of Land Area	39
5.2	Clobs Cultivated During the occoord	41
5.3	Domestic Water Ose	45
5.4	Attal Flain - Annual Groundwater 600 m ree	47
6.1	Calculation Model for Pumped Groundwater Costs (1991 YR)	50
FIGUR	ES	14
2.1	Location of the Attaf Valley	4
2.2	Map of the Attaf Valley Study Area	5
2.3	Catchment Area of the Attaf Valley	6
2.4	Mean Monthly Precipitation Near Attaf Valley	7
2.5	Total Annual Precipitation Near Attaf Valley	7
3.1	Hydrological Cycle	
4.1	Map of the Locations of the inventoried wells	14
4.2	Number of Wells Drilled in the Period 1971-1991	19
4.3	Cumulative Number of Wells Drilled Up to 1971-1991	19
4.4	Distribution of Well Depths	20
4.5	Cumulative Distribution of Water Column	21
4.6	Number of Pumps Installed in Relation to Number of Wells Constrc.	22
4.7	Distribution of Well Discharge Rates (I/s)	23
4.8	Distribution of the Costs of Well Construction and Pumping Equip.	24
4.9	Relation of Well Depths to Well Construction Costs	24
4.10	The Relation of Well Depths and Well Construction Costs.	25
4.11	Distribution of the Monthly Puimping Days	26
4.12	Distribution of Monthly Pumping Hours	26
4.13	Volumes of Groundwater Abstraction in 1991	28
4.14	Estimated Increase of Yearly Abstractions, 1970 to 1991	28
4.15	Map of the Depth to Groundwater	30
4.16	Map of the Piezometric groundwater level	31
4.17	Cross Section A-B-C (for location see Fig 4.16)	32
4.18	Distribution of Electrical Conductivity	35
4.19	Cross-section A-B (for location, see Fig 4.17)	34
4.20	Relationship of Electrical Conductivity to Water Depth	35
4.21	Distributionn of Groundwater Temperature	36
4.22	Map of the Temperature of the Groundwater	37
4.23	Relationship of Water Temperature to Water Depth	38
5.1	Distribution of Total Well Areas	40
5.2	Distribution of Areas Commanded by Groundwater (ha)	40
5.3	Crops Cultivated During Rabi'a (Spring)	42
5.4	Crops Cultivated During Sayf (Summer)	42
5.5	Crops Cultivated During Kharif (Autumn)	43
5.6	Crops Cultivated During shita (Winter)	43
5.7	Distribution of the Number of Persons Consuming Water from One Well	45
5.8	Irrigation Water Application During the Seasons	48
6.1	Costs of One Hour of Groundwater Pumping	51
6.2	Costs of One Cubic Metre of Pumped Groundwater	52

APPENDICES

- 1 Processing of the Well Inventory Data
- 2 Well Inventory Questionnaire
- 3 . Well Inventory Summaries
- 4 Staff Paticipating in the Well Inventory

NORADEP

2

£

.

A major component of the NORADEP Project (YEM/87/015) is the assessment of the groundwater potential of the Project Region, which covers the northern part of the Sana'a governorate and the governorate of Hajjah and Sa'dah (see Fig. 2.1). The data for this assessment will be used, together with the results of other specific and general studies carried out within the framework of the project, in the formulation of a Water Management Plan (WMP) for the Project Region. The Regional WMP will be based on WMPs prepared for each of the seven designated Target Areas in the Region.

The well inventory of the Attaf Valley represents one of the surveys that will contribute to the WMP by supplying the required information on groundwater resources and their use in this Target Area. The results of the survey are presented in this report.

The activities for the well inventory of the Attaf Valley were carried out during December 1991. Two teams were used, each consisted of two engineers and a driver. The drivers also assisted with the several measurements at the well site. A list of the persons that participated in the activities is presented in Appendix 4.

Before the start of the survey, each team received training in the field and background information on subjects such as the local hydrogeological conditions locating well sites with a compass, the use of the water level measuring tape, the EC-meter and measuring of well discharge. The basic field equipment of each team included a stopwatch, a thermometer, binoculars, an EC-meter, an altimeter, one or two water level measuring tapes (100 and 300 metres), a 75 litre bucket for well yield measurements, well inventory questionnaires and the necessary topographic maps (scale 1 to 50 000).

A total of 113 wells were visited in the study area and the same number of questionnaires were been filled out, each containing up to 120 data from each well site. Information collected included data on the well location, well details, pump characteristics, measured well observations, water use, and well costs, among others. The layout of the questionnaire is presented in Appendix 3. For convenience of processing and retrieval the most important topics of data are summarized and presented in Appendix 3.

YEM/87/015

NORADEP

2

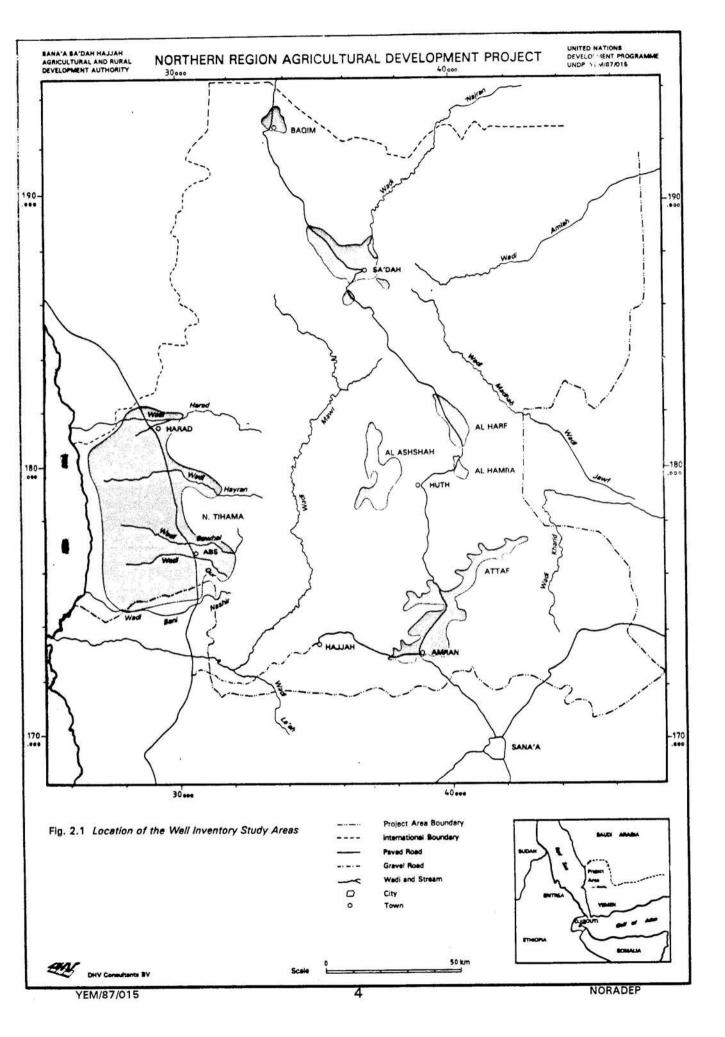
•

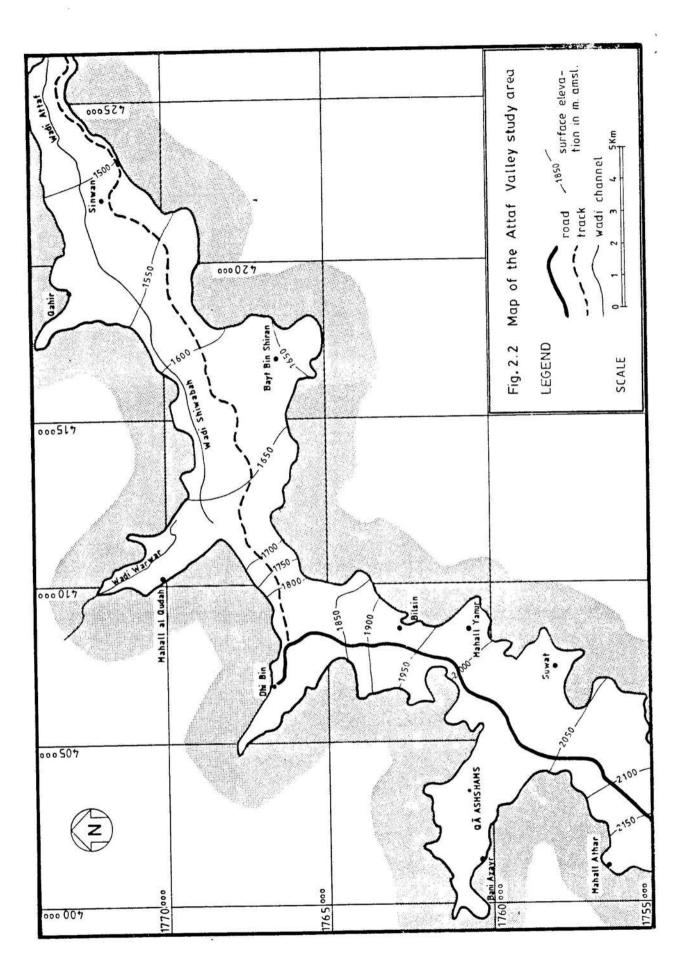
2.1 LOCATION AND TOPOGRAPHY

The Attaf Valley is situated in the Central Highlands and can, geologically, be considered as a continuation of the Amran Valley in a north easterly direction. Like the Amran Valley it is a graben formed by tectonic movements along northeast/southwest major faults, filled with alluvial deposits interbedded with basalt flows and partly covered with basaltic pyro-clastics and fragmented volcanic detritus. Its location is within the UTM coordinates 1 755 000 and 1 775 000 north and 400 000 and 435 000 east (15° 52' to 16° 03' north and 44° 00' to 44° 24' east) and it is about 39 km long. The width of the valley varies from five km in the southwest to only 500 m in the northeast.

Topographic elevations in the plain range from 2150 m above mean sea level (amsl) in the southwest near Mahali Athar (see Fig. 2.2) to 1306 m at the eastern margin near Wadi Attaf, resulting in an average surface gradient of 850 m over a distance of about 39 km, or 2.2%. The bounding mountain ranges are composed of Quaternary basalt in the south and Amran limestones in the north, ranging in height from 2700 m in the southwest to 1400 m in the northeast.

The entire catchment area of the valley covers 2200 km² (see Fig. 2.3). The Attaf Valley forms part of the catchment area of Wadi Kharid, which is a major tributary of Wadi Jawf in the east.

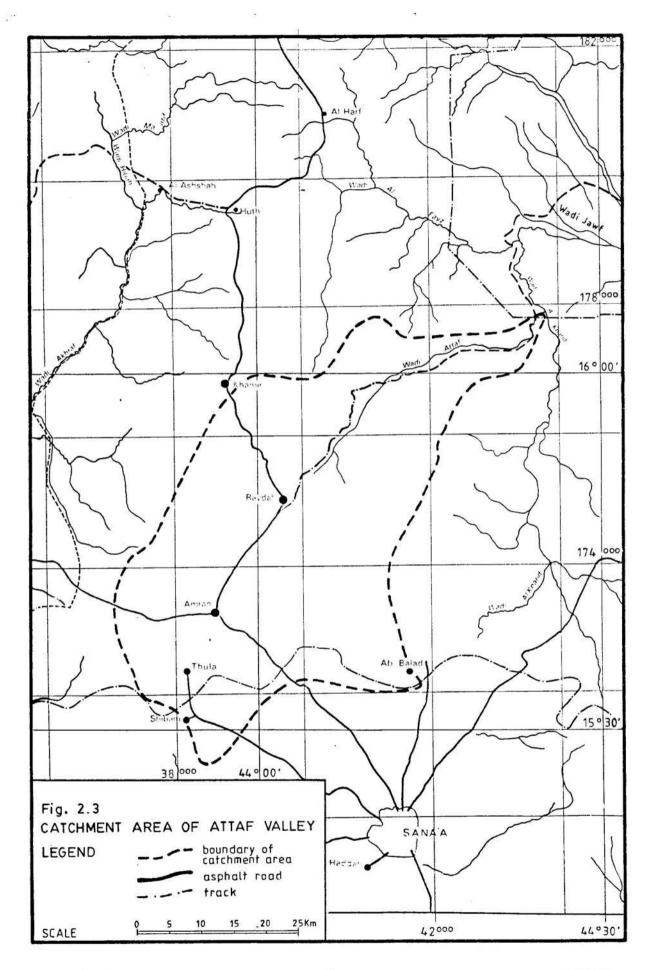

There are no data available on the number of inhabitants of the study area. The two most important towns are Dhi Bin and Sinwan.


2.2 CLIMATE

Just as in the bordering Amran Valley a semi-arid climate prevails in the study area. The climate is classified (Koppen) as mountainous semi-arid. The natural vegetation is of the briar-succulent-savannah type, represented by some trees on moist soils near wadi outlets, shrubs, briar and grassland. As a consequence of intensive grazing by sheep and goats little of it is left and the result is the desertlike appearance of the non-cultivated parts of the valley.

Rainfall is sporadic and scanty and storms usually are short, intense and local. Fig. 2.4 shows the mean monthly rainfall measured at two locations near the Attaf Valley (Al Boun Farm 9 km south of Raydah, and Huth), while Fig. 2.5 gives the total annual rainfall within the Attaf Valley catchment area (Al Boun Farm and Raydah). Sources of these data are MAWR, TDA and Eger (1987). Totals range from an annual average of 150 to 425 mm within the valley. For example, the station in the centre of the Qa' Al Boun showed an average yearly precipitation of 250 mm during the period 1975-1991. The monthly distribution of rainfall is variable. In general two peaks of rainfall occur during the year: March-May and July-August. The wettest month in most locations is August. The rest of the year has little or no rainfall.

NORADEP



NORADEP

YEM/87/015

5

YEM/87/015

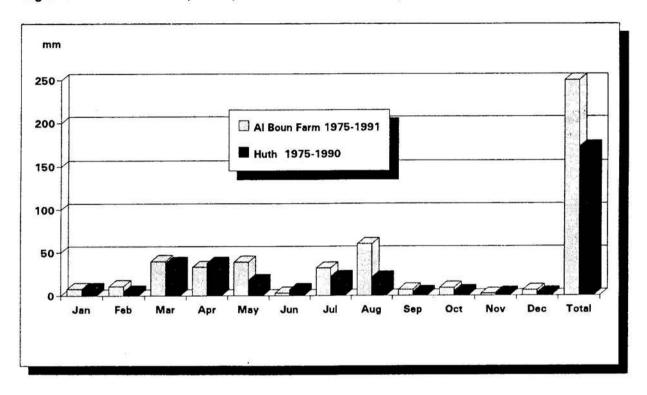
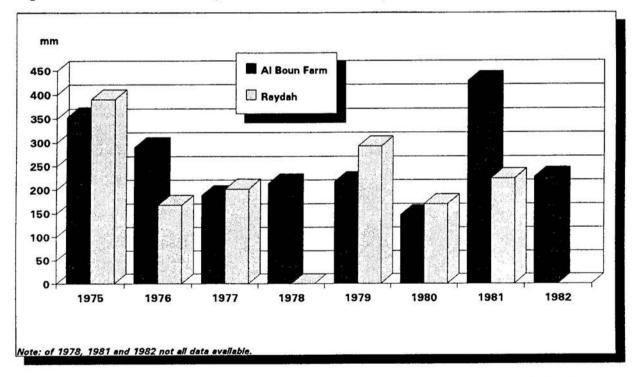



Fig.2.4 Mean Monthly Precipitation Near Attaf Valley

Fig. 2.5 Total Annual Precipitation Near Attaf Valley

Temperatures range from 33 degrees Celsius in the summer to three degrees in the winter. The annual average temperature is 14.6 degrees. The mean monthly

NORADEP

maximum temperature is 28.4 degrees, while temperatures in the winter can drop to below zero.

The relative humidity is usually very low: in dry periods monthly minima of only 10-20% are reached. Even during wet periods with maximum figures from 90 to 100%, minimum values of only 10% were still measured.

Evaporation far exceeds precipitation for most of the year. It was measured by the German-Yemeni Plant Protection Project in 1976 and established at about 2800 mm per year. Daily figures in the driest months were 10 mm, 5-6 mm in the wettest months.

3 GEOLOGY AND HYDROGEOLOGY

3.1 GEOLOGY

3.1.1 Tectonics

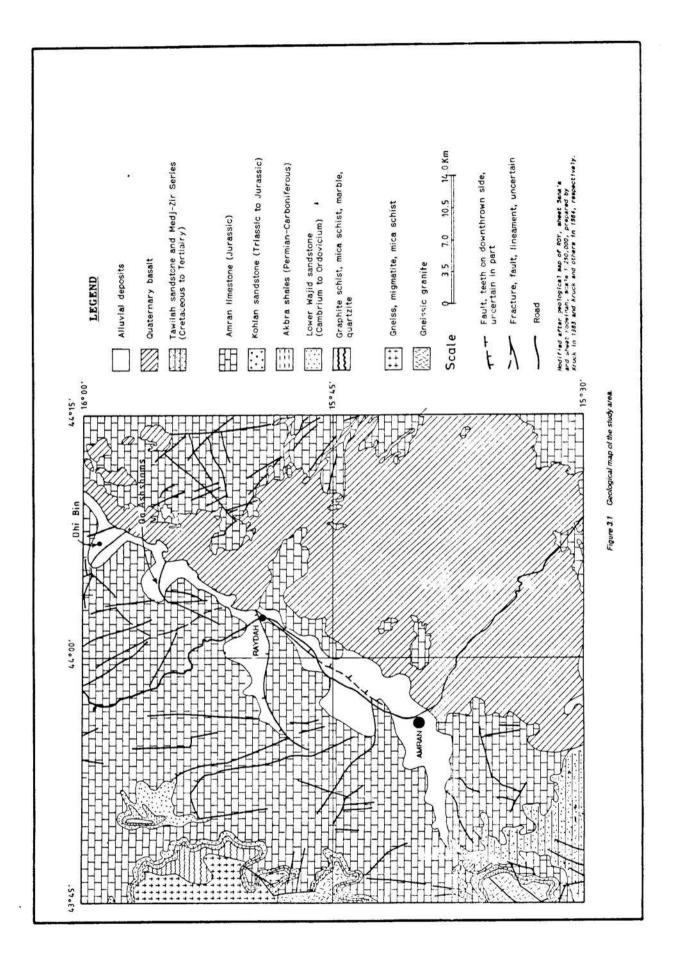
The Attaf Valley gets its name from the wadi that drains the northwest part of the valley: Wadi Attaf. Geologically the Attaf Valley is a continuation of the Amran Valley. Like the Amran Valley it originated in the downthrow during the Oligocene (Tertiary) of the Amran limestone along major faults, causing a graben system that later during the late Tertiary (Pliocene and Miocene) and Quaternary filled with alluvial sediments. During this deposition intermittent volcanic activities at the southeast border of the valley were responsible for the deposition of the interbedded basalt layers (see Figs. 3.1 and 3.2).

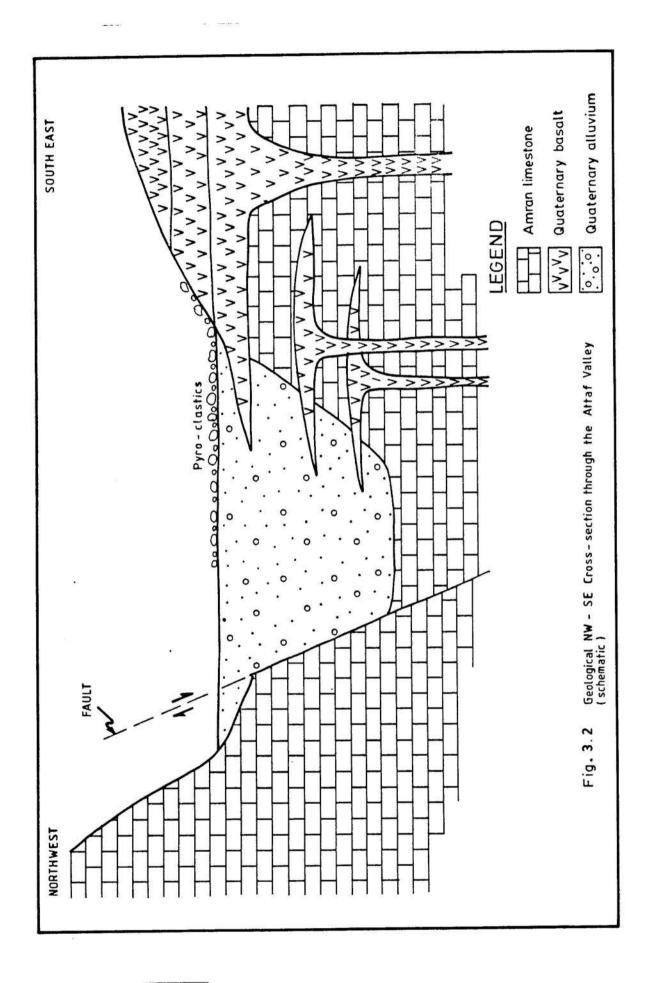
3.1.2 The Quaternary Volcanics

To the south and the southeast of the graben a volcanic field, composed of some 100 cones and associated basaltic lava flows, extends over an area of about 26 km long and 2-5 km wide. The volcanic activity occurred between 100 000 and 1800 years ago. The thickness of the volcanic cover varies from zero to several hundreds of metres. The basalts here are dark grey to black coloured.

The satellite photos show most of the valley as a black colour. This is partly caused by basalt flows, but also in large areas by the existence of a thin layer of black basaltic detritus and pyro-clastics. Only in some areas, mainly near the main wadi outlets, this sheet of black stones has been covered by more recent alluvial wadi deposits. These are the areas with the main agricultural activity. Table 3.1 shows the description of the geological formations and their hydraulic characteristics.

3.1.3 The Quaternary Alluvium


During the Quaternary period, the depression (graben) was filled up by alluvial deposits, consisting of clay, loess, silt, sand, gravel and boulders. This material originated from the surrounding outcropping Amran limestones, the Tawilah and Medj-Zir sandstone escarpment in the southwest near Shibam. These unconsolidated sediments are interbedded with Quaternary basaltic layers and form the principal aquifer of the area. Fig. 3.2 is a northwest-southeast geological cross-section through the Attaf Valley.


The thickness is greatest along the main axis of the valley where it probably reaches probably more than 300 m. It diminishes towards the limestone and basaltic flanks. The Quaternary alluvial deposits lie upon the block-faulted limestones of the Amran Series.

3.1.4 The Amran Limestones

The Amran Limestone Series outcrops over a vast area, roughly between the

NORADEP

Charleninging	CIIAIACIEIISIICS	
7	-	
	r MV0rogeologica	
•	-	•
1.1.1	ut Due s	
1	ì	
	Forms	
	Goological	I auro J. I devivaria
10000		
	Table 3	

Geological formations and their hydrogeological characteristics

a) Alluvium: moderate to good aquiter depending on grainsize and Basalt flows function as semi-confining layers at variable depth. supplier of groundwater to the Amran Valley from SW (10 km) Outcropping 35 km W of study area. Probably underlies Poor aquifer, except in or near fractured fault zones, no Aquiclude and aquifuge, outcrops 25 km SW of Amran. Potential aquifer due to its volume. Possibly important Too far outside study area (20 km S) to be significant Practically impermeable and little water storage. Not significant for the water supply of Attaf Valley. b) Basalt flows: poor aquifers, unless fractured. indications for the occurrence of karst. Multi-semiconfined aquifer system of: Poor aquifer, unless fractured. Main aquifer of Attaf Valley. Amran Limestone Series. n water balance. Hydrogeology cemented quartz sandstones with conglomerate horizons. tuffs, basalts and intrusives. Granite, gneiss and mica gravel and conglomerate Quaternary basalt dykes. Limestones, dolomites, quartz sandstones with marl, shale layers and Fine grained. partly Volcanic flows, sills, Cross-bedded fine to coarse grained Basalts and tuffs Loam, silt, clay. loess, gravel, Lithology horizons. boulders. schists. Medj-Zir Series and Basement complex ocally interbedded Yemen Volcanics Alluvial deposits. with basalt flows Tawilah Group Kohlan Series Amran Series Litho-stratio ratigraphic age Cambrian theeous uatemany C.E.C. ertainy **Miseline**

Attaf Plain

YEM/87/015

NORADEP

12

towns of Sana'a, Hajjah, Sa'dah and Marib. Its age has been determined by fossils (stromatoporoids, ostrea, brachiopodes) as middle to late Jurassic. During that period an important marine transgression (or land subsidence) extended over the entire country and shallow water marine calcareous deposits were formed. In the NORADEP Region the Amran Series rest upon the calcareous sandstones of the Kohlan Group and in some areas directly upon the Precambrium Basement.

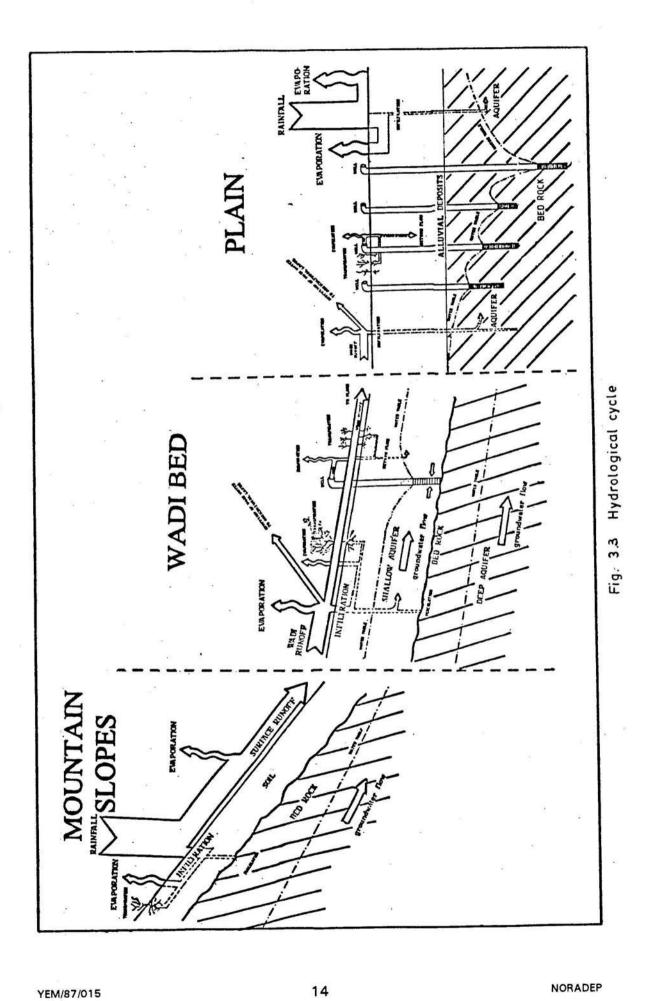
The lower member of the Amran Series is represented by the Shuqra Formation and consists mainly of white/yellow/black limestones. Its depositional environment was shallow reefal marine. Then a period of block faulting followed. During a new transgression, the Maabi and Sabatain formations (rock salt, marl, gypsum, some shales and limestones) were deposited directly upon the eroded top of the Shuqra formation in the graben extending from Amran to Thula. The late Jurassic was a relatively stable period and fluvio-marine sediments were laid down (the Al-Ahjur formation), consisting mainly of marly, shaly and sandy mudstones. Towards the end of late Jurassic, another regression resulted in a continental depositional environment. Continental fluviatile sands and conglomerates were then laid down (Tawilah Group).

The thickness of the Amran Series ranges from 400 to 600 m at the edge of the Amran Valley and exceeds 800 m in the Attaf Valley. It is calcareous everywhere, although the facies change with location. Near the Amran Valley, the formation shows yellow-white limestones containing shallow water fossils. Here the limestone is faulted and heavily jointed, forming the eastern, western and northern flanks of the Amran Valley.

3.2 AQUIFER SYSTEMS

3.2.1 Alluvium

The Quaternary alluvium, where saturated, represents a relatively good aquifer. The highest permeabilities are in the interbedded gravel layers. The groundwater of the Quaternary alluvium of the plain is assumed to be replenished by the surrounding Amran limestones, Quaternary volcanics and the wadi-fills debouching in the valley. Fig. 3.3, the hydrological cycle, presents a schematic model of the movement of water in the Attaf Valley and its catchment area.


The (natural) water table gradients in the Amran Valley indicated a groundwater flow directed to the northeast, bending eastward into the Attaf Valley. In this wadi, east of Shuarba, groundwater discharges through springs (perched aquifer?).

3.2.2 Bedrock

Limestones

The Amran Series, principally composed of limestones, marls and some shales, are generally considered as a poor aquifer. Higher permeabilities are only encountered in fractured zones. Interbedded shales and marls act as aquicludes or aquitards. There exists no evidence of an extensive system of solution openings (karst). It can be expected that the frequency of fractures, faults and thus permeability

NORADEP

YEM/87/015

decreases with the depth. Only at the edges of the Attaf Valley is exploitable groundwater found in fracture zones.

Tibbits and Aubel (1980) drilled six boreholes in the limestone in the nearby Amran Valley. Only one well (near Menjidah) gave a reasonable yield: 14.5 l/s; the remaining five boreholes did not yield much water.

Volcanics

Most of the test boreholes drilled during the same study in the volcanic deposits proved to be dry. Water-bearing and water-transporting capacities would only be expected in fractured zones and dykes, along bedding planes and in scoriaceous (tuff) intercalations. Test holes drilled in the basaltic volcanics near Raydah (northeast of Amran), were dry, even at depths of 60 m below the local water table in the alluvium (Tibbits/Aubel, 1980).

Test drilling by the same consultants in the Amran Valley near the Attaf Valley revealed that the Quaternary volcanics are underlain by the Amran limestones. Locally, small groundwater occurrences were indicated at shallow depths in dykes crossing the adjacent mountainous area.

3.3 AQUIFER PARAMETERS

Aquifer tests executed by Tibbits/Aubel (1980) in the period 1975-1977 clearly showed groundwater occurrence under semi-confined (leaky) conditions in the Amran Valley. Because of the similar depositional environment in the Attaf Valley, the same can be assumed for the study area. The semi-confinement is caused by semi-permeable basalt beds that are interbedded with alluvial sediments. Wells penetrating these beds may show some higher water tables than the general water table (artesian groundwater). The aquifer tests indicated that, in general, aquifers here have good capacities, are leaky and that transmissivity values increase towards the axis of the valley.

YEM/87/015

16

1

!

t.

4 GROUNDWATER - GENERAL

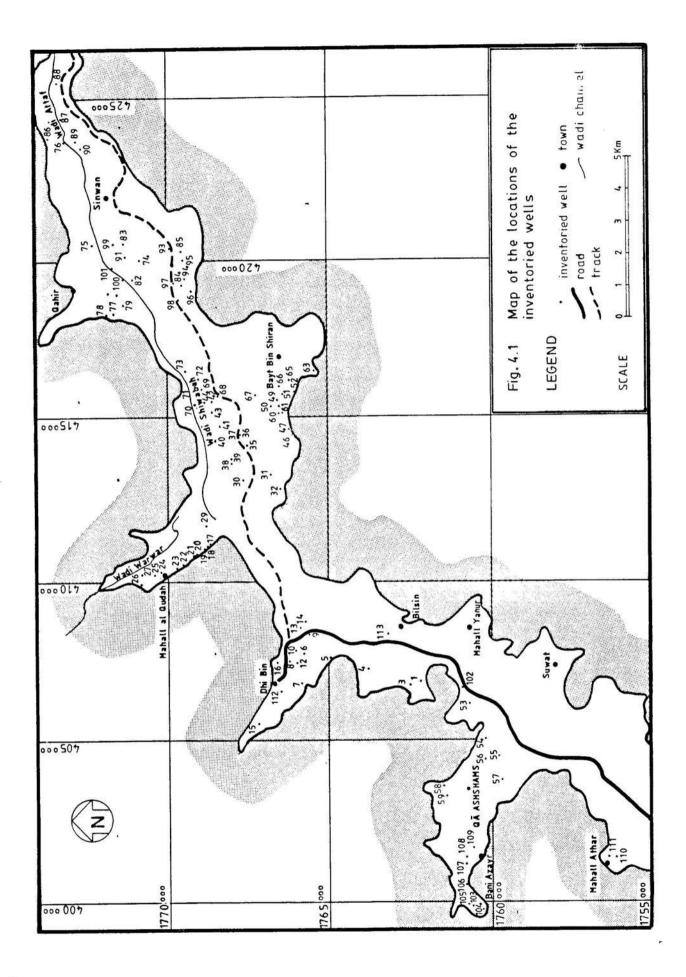
4.1 DISTRIBUTION OF WELLS

Fig. 4.1 shows the locations of the wells visited during December 1991. A total of 113 wells were inventoried. It can be assumed that at least 90% of all existing wells were surveyed and that the remaining 10% are evenly distributed over the total area. Nevertheless large areas with a lower well density show up.

Several parts of the plain are not suited for agriculture because of irregular topography and soil properties, but mainly because large areas of the valley are covered with a carpet of basalt layers and/or basalt stones (pyro-clastics and clastic basalt). Near the borders of the plains spate irrigation dominates, in some places supported by pumped irrigation.

4.2 NUMBER OF WELLS

The total number of wells was estimated at about 125, of which 113 were operational.


Most dug wells have fallen dry over the last ten years because of the reducing water table. Since the introduction of drilled wells water levels have fallen to such an extent that the manual digging and deepening of wells has been forced to stop, except in some areas with shallow (perched) groundwater tables at the borders of the plain, in the valley tributaries and in wadi courses. Only the richer farmers could afford to drill deeper wells to reach the water, although groups of farmers have started to cooperate to finance the drilling of a shared deep well.

In the past, water was abstracted by buckets lifted by donkey power. However, all the wells are now equipped with turbine pumps. Only a few wells in the upper wadi regions with shallow water levels use low power centrifugal pumps.

Fig. 4.2 and 4.3 show the total number and the cumulative number respectively of wells that were still operational in 1991 and were drilled during the period of 1971 to 1991. It should be noted that these are net figures, ie. the number of drilled wells minus the number of abandoned wells. Serious groundwater development in the Attaf Valley started about 10 years (1971) later than in the Amran Valley (1962). Most drilling activity occurred in the period from 1981 to 1987. Since 1987 the rate of drilling has dropped from 15 wells in 1987 to three in the following years. 1990 and 1991 also show relatively very low numbers.

A preliminary conclusion is that farmers started to recognise the high costs involved in pumping from great depths. Statistical analysis of the cumulative distribution of construction over the years shows that 50% of all existing wells were drilled after 1984, and the average well age is 7.5 years. The oldest well dates from 1971. Because of the falling groundwater table some wells have been deepened during the last 20 years.

NORADEP

YEM/87/015

18

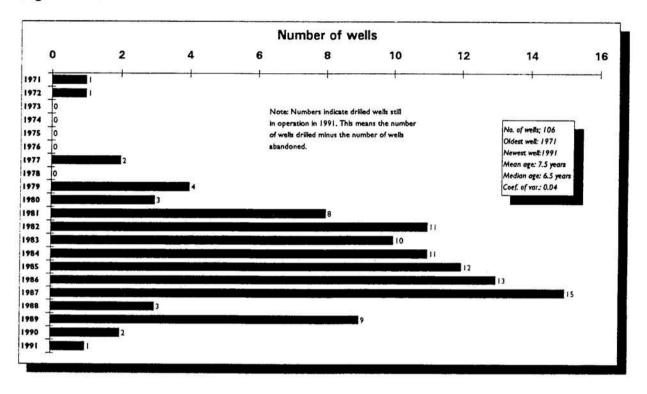
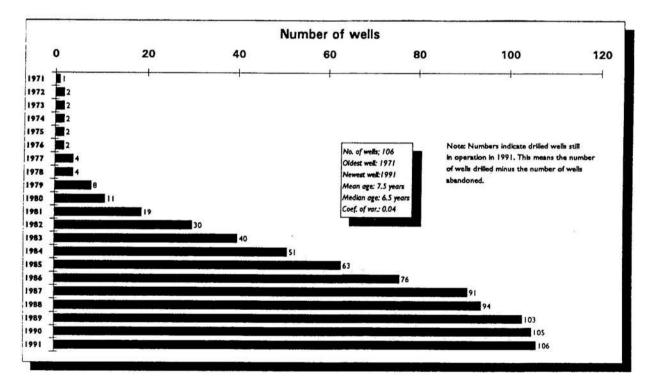



Fig. 4.2 Number of Wells Drilled in the Period 1971 - 1991

Fig. 4.3 Cumulative Number of Wells Drilled in the period 1971 - 1991

NORADEP

YEM/87/015

19

4.3 WELL CHARACTERISTICS

Almost all the wells inventoried are drilled wells. Only one dug well was encountered. Only two wells were reported to have been deepened once, a very low figure when compared with the Amran Valley, where 23% of the wells were deepened one or more times.

The drilling method used was predominantly rotary although some older wells were drilled with the cable tool method. Except for a few wells drilled in limestone and basalt, all wells were completely cased.

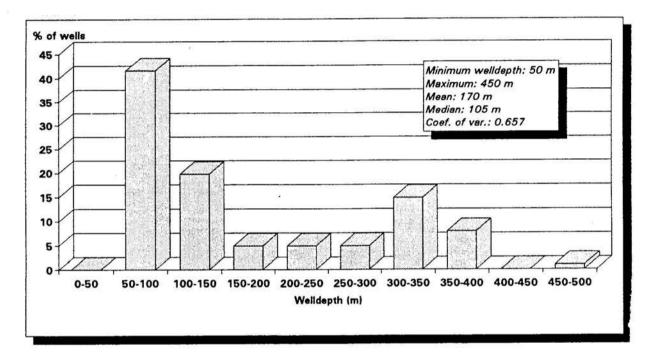
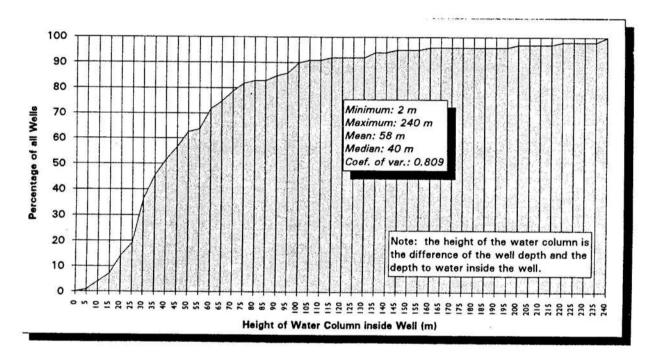


Fig. 4.4 Distribution of Well Depths


All the wells, except the dug well, had steel casings. Casing diameters differ significantly from those observed in the neighbouring Amran Valley: small diameters (8") dominate. They range from 8" to 12" (8" diameter: 58%, 10": 26% and 12": 14%). The lower section is screened with a series of 6 m long slotted pipes.

Well depths range from 50 m to 450 m. The average depth is 170 m. A relatively high concentration of deep wells exist in the southwest part of the valley. Here, groundwater levels are very deep: from 200 to more than 350 m. (see Fig. 4.15). Fig. 4.4 shows the distribution of depth over all the wells. It indicates that there are two dominant groups of well depths, one of 50 to 150 m (mostly wells in the northeast with shallow water depths) and one of 300 to 400 m (wells in the southwest with deep water levels).

4.4 WATER COLUMN HEIGHTS

One way to indicate how the wells would withstand falling water levels, or in other words how much water column is available inside the wells, is to define and analyze the water column height of the well. The water column height is the difference between the well depth and the depth to the local static water level. By analysing the cumulative distribution plot of the water column heights of all the wells the percentage of wells that would fall dry when the water table drops by a certain amount can be deduced.

Fig. 4.5 shows that the depths of most wells in relation to the water level depths are such that before long a significant percentage of the wells are likely to fall dry. The average aquifer penetration is 58 m. The figure shows that, if the groundwater drops 30 m over the whole plain, then 35% of the wells (Amran Valley: 9%) will fall dry. This percentage would increase to a minor extent when the drawdown brought about by pumping is also considered.

4.5 PUMPING EQUIPMENT

Water is pumped in 73% of the wells by vertical turbine (lineshaft) pumps coupled via crossed webbing belts to diesel engines. However, a relatively high percentage (27%) of the wells are equipped with electro-submersible pumps, driven by electrical power generated by high capacity engines, particularly in the southwest part of the valley where water levels are very deep.

NORADEP

YEM/87/015

21

The level of standardization in engine and pumping equipment is lower than in the Amran Valley: 72% of the pumps were supplied by two manufacturers, Caprari (68%) and Iperson (8.5%), while the remaining 28% were fabricated by nine different manufacturers. The pump column diameter was mostly three inch (71% of wells) or four inch (19%).

The same level of standardization was noticed among the engines that power the pumps. Japanese engines are used for about 60% (Yanmar 46% and Mitsubishi 14%). The remaining 40% was divided between 17 other makes. The engines had capacities ranging from 20 to 35 horsepower for the lineshaft pumps and 74 to 250 kiloWatt for the electro-submersible pumps.

The average age of the wells is about the same as that of the pumps (7.5 years in 1991). During the period 1988-1991 more pumps were installed than wells constructed, replacing pumps installed before this period (see Fig. 4.6).

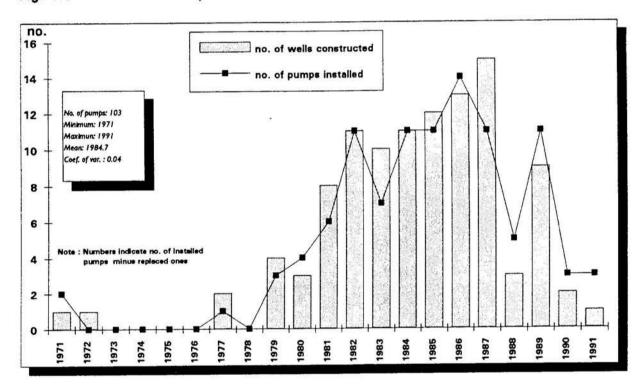
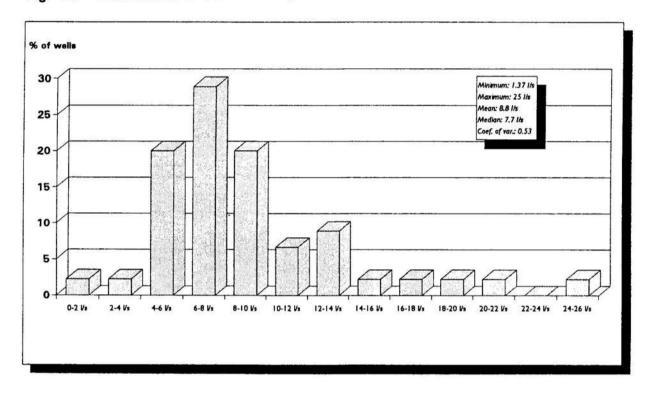


Fig. 4.6 Number of Pumps Installed in Relation to Number of Wells Constructed

4.6 WELL YIELDS

Well discharge rates vary from about 1.4 l/s to 25 l/s. The mean is 8.8 l/s. The distribution of well yields is presented in Fig. 4.7. Well yields are determined by several parameters: the capacity of the pump, the well efficiency, the screen length, the depth to water, and aquifer parameters like transmissivity and storage coefficient.


Drawdowns during pumping are in general low: in the order of only a few metres

YEM/87/015

22

at a discharge rate of about 10 l/s.

The specific discharge, defined as the discharge divided by the drawdown in the well, can give a fair indication of the permeability of the aquifer near the well. The higher the specific discharge, the better the water transporting capacities of the aquifer. Only a few measurements of the dynamic water level could be carried out.

Fig. 4.7 Distribution of Well Discharge Rates (I/s)

4.7 COSTS OF WELL CONSTRUCTION AND PUMPING EQUIPMENT

Data on costs of well construction and for the purchase and installation of the pumping equipment are presented in Fig. 4.8. The costs of well construction include the drilling of the well, the installing of the casing, the screen (slotted pipes), the gravel pack and the development (air lift) of the well.

The pumping equipment costs involve a more variable package of items. In all cases the costs of the pump and the engine are included. In many cases a small stone house is constructed around the engine and well. Most farmers have built a reservoir where the pumped water is collected and from where it is distributed to the fields. The costs may also include the installation of pipes and tubes to convey the water.

The same figure shows the distribution of costs. Well construction costs range from YR 66 000 (a 66 m deep well) to YR 500 000 (a 350 m deep well). Median well cost is YR 254 000, while pumping equipment costs have a much larger

NORADEP

variation - from YR 30 000 to a YR 1 000 000 (a 340 m deep well), and a median of YR 238 000.

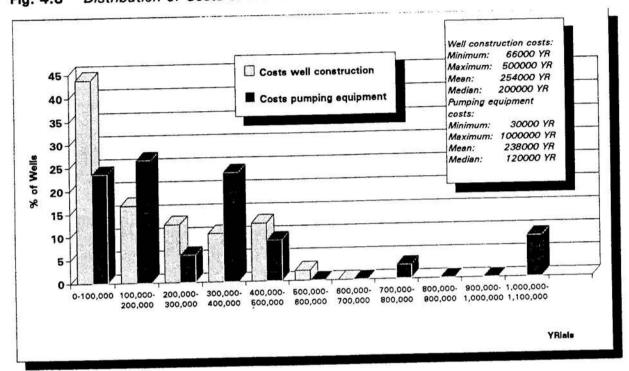
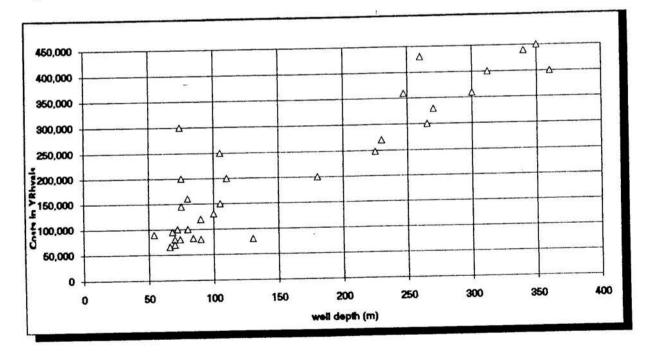
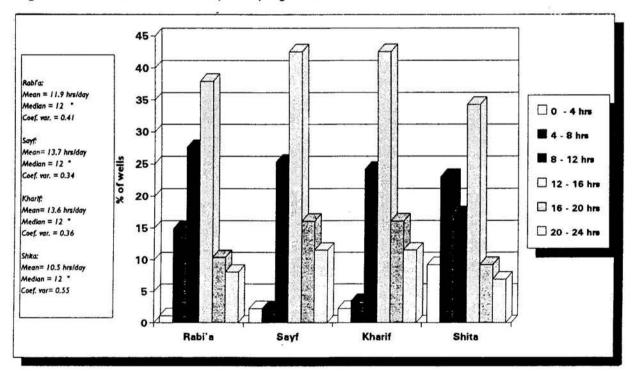



Fig. 4.9 Relation of Well Depths to Well Construction Costs

YEM/87/015

24


t

Both well construction and pumping equipment costs are higher than in the Amran Valley. This can be partly explained by the lower age of the wells and pumps in the Attaf Valley (more recent prices) and the expensive engines for the electro-submersible pumps.

In Fig. 4.9 the costs of well construction, excluding the costs for pumping and related equipment are plotted against the well depth. It must be remembered that these costs are costs at the time of construction or purchase and that the data concerns wells drilled during the period of about 1971 to 1991. As a consequence of currency inflation, the mean real costs (1991 YR) are somewhat higher. The average price per metre over this period was about YR 1250.

4.8 PUMPING SCHEDULES

The average farmer switches the pump on at sunrise and switches the pump off at sunset, throughout the seasons. This is reflected in the mean yearly number of pumping hours per day - 12. Pumping activities are highest during Sayf¹ (mean 13.7 hrs/day), followed by Kharif (mean 13.6 hrs/day), Rabi'a (mean 11.9 hrs/day) and Shita (mean 10.5 hrs/day).

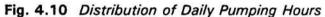


Fig. 4.10 shows the distribution of daily pumping hours throughout the seasons. On about 60-65% of the irrigated land grape is cultivated (see Section 5.2), and so during Sayf much water is needed as the grapes are then in their mature phase.

¹ The seasons in Yemen are Rabi'a, Sayf, Kharif and Shita. They correspond approximately with spring, summer, autumn and winter.

About 4% of the farmers let the pump operate 24 hours per day.

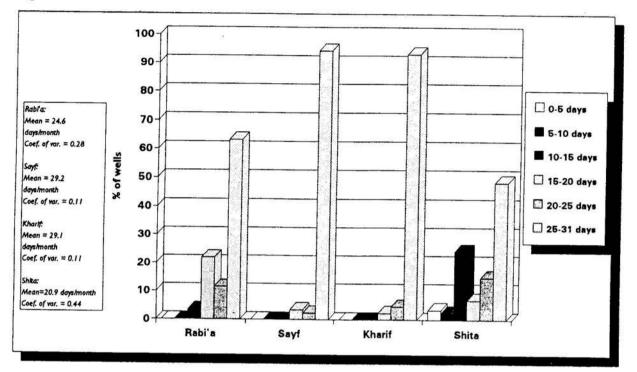
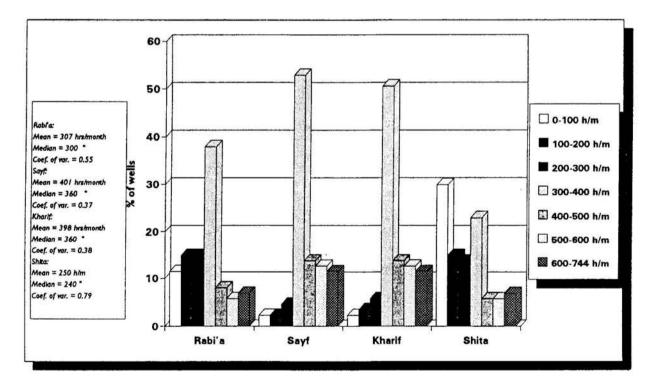



Fig. 4.11 Distribution of Monthly Pumping Days

Fig. 4.12 Distribution of Monthly Pumping Hours

YEM/87/015

26

t

Over the whole year the average number of pumping days per month was 26 (see Fig. 4.11); the number of pumping hours per month 339, an average of 11.3 hours per day (see Fig. 4.12).

4.9 GROUNDWATER ABSTRACTION

To enable an assessment to be made of the total groundwater abstraction a fair estimate has to be made of the total number of operational wells. At 45 wells (of the total of 113 wells visited) the discharge could be measured, but at the remaining 68 wells no discharge measurements could be carried out for the following reasons: the well was dry, there was no pump and/or engine, no diesel, no oil, because of a broken pump/engine, or just because there was nobody to switch on the pump.

10.6% of the wells appeared to be permanently out of order. For the calculation of the yearly total discharge in the plains, these wells were not taken into consideration. Assuming the total number of wells to be about 125 and applying the same percentage of fall out, then about 112 wells would have been operational.

Included in the well inventory questionnaire was a question concerning the yearly number of days that the well was not operational for reasons of maintenance and repair; on average 6% of the time the wells were not pumping on these grounds. This percentage was also taken into account when calculating the seasonal and total yearly abstracted groundwater volumes.

	Rabi'a	Sayf	Kharif	Shita	Year
Groundwater Abstracted per well (in 1000 m ³)					
Mean	30.4	38.8	38.8	24.4	132.4
Median	25.7	35.0	35.0	22.4	10.9
Minimum	4.8	8.9	9.9	0.9	37.7
Maximum	114.2	114.2	114.2	81.2	365.5
Coef. of variance	0.67	0.56	0.56	0.72	0.52
Total volume of groundwater abstracted in Mcm	1.37	1.75	1.75	1.1	5.96
Based on no. of wells	45 .	45	45	45	
Total volume of groundwater abstracted in Mcm (extrapolated, assuming a total of 112 operational wells)	3.4	4.35	4.35	2.73	14.83

Table 4.1	Volumes of	Groundwater	Abstracted	During	the Seasons
-----------	------------	-------------	------------	--------	-------------

In Table 4.1 and Fig. 4.13 are calculated and presented the seasonal groundwater abstractions. A yearly total of approximately 15 million m³ (Mcm) of groundwater abstraction was determined for the Attaf Valley in 1991. The volumes during the

NORADEP

individual seasons were 3.4, 4.3, 4.3 and 2.7 Mcm for Rabi'a, Sayf, Kharif and Shita, respectively.

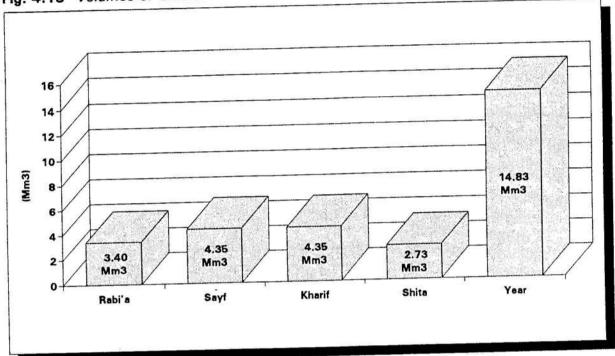
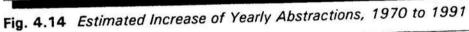



Fig. 4.13 Volumes of Groundwater Abstraction in 1991

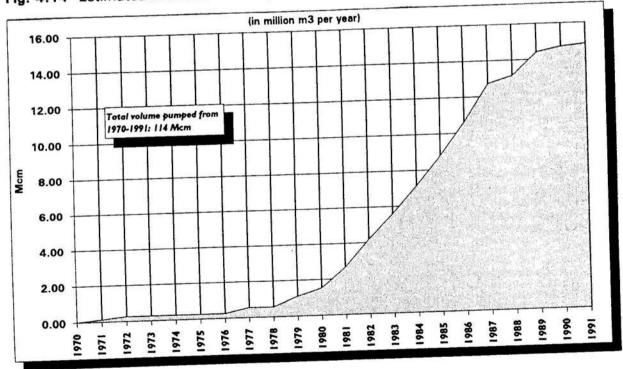


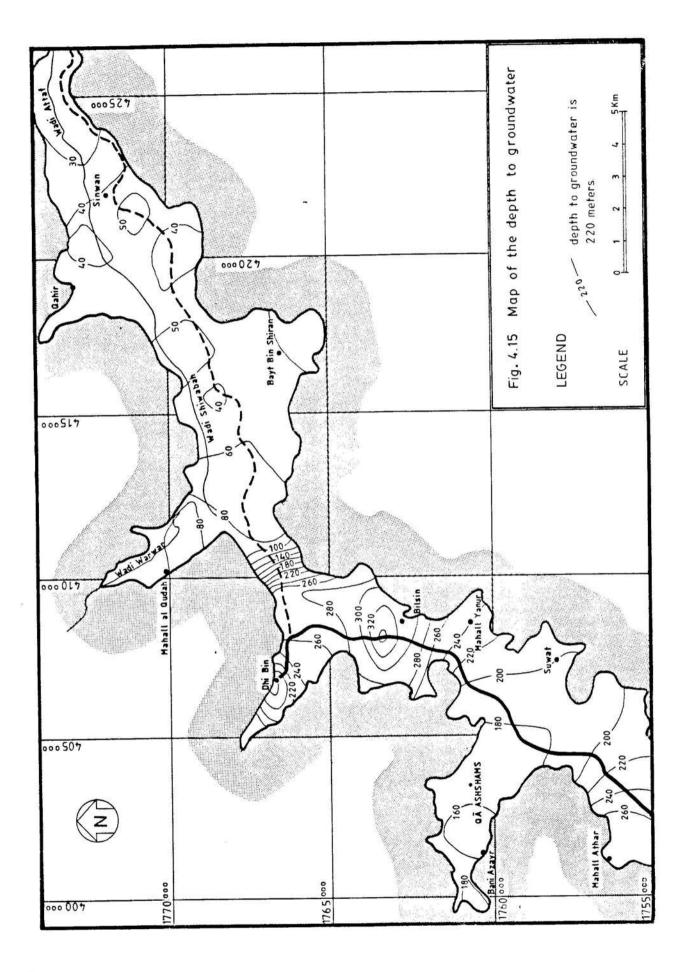
Fig. 4.14 displays the yearly increase and volumes of groundwater abstraction during the period 1971 to 1991. The highest growth occurred from 1981 to

YEM/87/015

1987. From 1987 to 1991 this increase diminished. A (very rough) estimate of all the groundwater pumped in the Attaf Valley, using figures from 1971 (when abstraction became significant) to 1991 is about 114 million m³. This represents a water layer of 0.8 m depth covering the whole Attaf Valley. Expressed in terms of lost aquifer, assuming an average effective porosity (specific yield) of 5%, then the volume pumped during the 20 years corresponds to a lost saturated aquifer thickness of 100/5 * 0.8 = 16 metres, over the whole Attaf Valley.

4.10 DEPTH TO GROUNDWATER

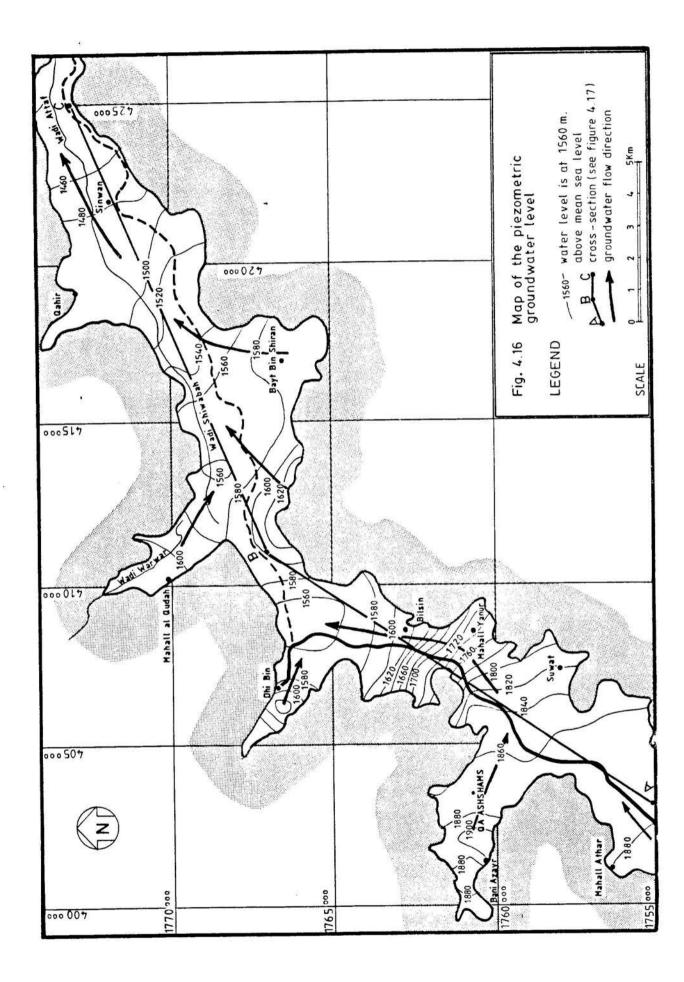
Data on groundwater levels were collected either by measuring with a sounding tape or by asking the well owner. In many cases it proved to be rather difficult to measure the groundwater level, because a large number of the wells were completely sealed with masonry, or because the space between the pump column and the casing was so small that the sounding probe could hardly pass through it.


During the well inventory several tapes were lost, stuck in the annular space between the two pipes. Thus it was that in many cases the farmer had to be questioned on the water depth. Usually the depth to the water table was approximately known to him (expressed in the number of three metre long pump column pipes). Besides, many farmers measure the water level regularly with a marked cord. However, practically all farmers know the depth of the pump setting (expressed in the number of pump column pipes above the pump). Because this figure seemed to be a more reliable depth indicator than an estimated water depth, a contour map of the depth to the pump setting has also been composed, as a quality control. The pattern of groundwater depths almost completely corresponds with the pump depth contour map.

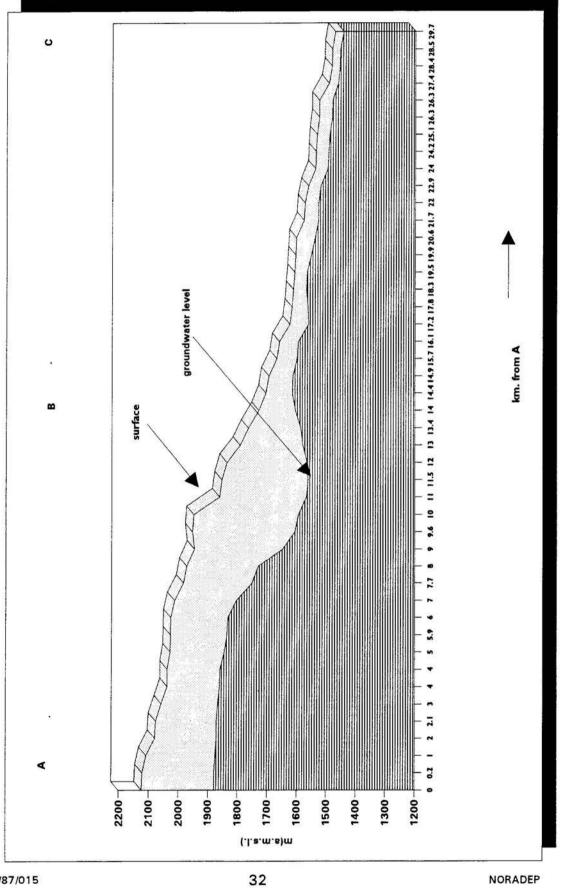
There is a wide range of groundwater depths in the Attaf Valley, from 25 m (4 km southwest of Sinwan) to 320 m (4 km southeast of Dhi Bin), and up to 370 m 1 km northwest of Bilsin). When analysing Fig. 4.15 it can be observed that the southwest part of the valley (west of UTM 411 000) has extremely deep groundwater levels (ranging from 160 to 370 m). The northeast part of the valley (east of UTM 411 000) shows much lower water depths, varying from only 25 to 85 m. This sudden change in the groundwater depth is caused by a very high topographic gradient of 100 m over a distance of 1 km (10%) to the east-northeast of Dhi Bin, resulting from the downthrow along a large southeast-northwest fault (see Fig. 2.2 and 4.17).

Excessive pumping takes place in the area southeast of Dhi Bin, for irrigation but also for the water supply to Dhi Bin village. There is a large elongated cone in the water table that can be observed both on the piezometric map (Fig. 4.16) and the cross-section ABC (Fig. 4.17).

4.11 GROUNDWATER PIEZOMETRIC LEVEL


A piezometric map (Fig. 4.16) has been composed by contouring the piezometric levels, the difference between groundwater depth and ground surface elevation

1


YEM/87/015

30

NORADEP

31

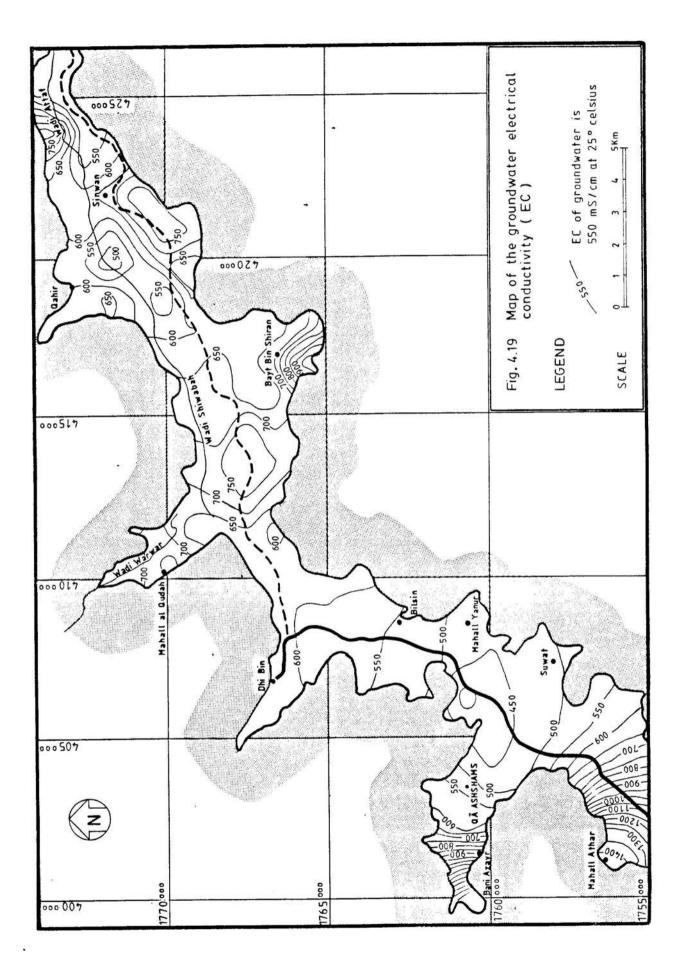
above mean sea level, at each well site. Thus, the piezometric contour lines indicate the groundwater level, expressed in meters above mean sea level.

Groundwater levels vary between 1880 m in the southwest near Mahall Athar and 1440 m near Wadi Attaf in the northeast, representing an average hydraulic gradient of 440 m over a distance of about 39 km (= 1.13 %). However, the main drop in groundwater level is from west of Suwat to Bilsin where, over a stretch of 4 km, the water level falls 240 m (see also cross-section ABC in Fig. 4.17). Here the hydraulic gradient is 6%. The remaining part of the Attaf Valley has a gradient of only 0.7%.

In the valley, east of Dhi Bin, the natural northeastly groundwater flow has been reversed as a consequence of excessive pumping.

It is clear that the groundwater table (or piezometric surface) can be considered as an undulating surface, characterized by several peaks and depressions. However, the pattern of this surface is not fixed in time, not even over a small time unit such as a day. In some places water levels are lowered by pumping, elsewhere water levels rise as a result of switching off pumps, resulting in a continuously undulating water table 24 hours per day.

4.12 LOWERING OF GROUNDWATER LEVELS


For an analysis over time of trends in groundwater levels a time series of groundwater depths is needed. However, no long term data on monitored water levels are available. It is known that at the boundary of the Amran Valley and the Attaf Valley the groundwater level dropped 50 m from 2130 m in 1977 to 2080 m amsl in 1991. It would seem that groundwater depletion in the Attaf Valley is not as serious as in the Amran Valley. It is true that depths to groundwater in the southwest are very large, but the relatively small drop in water level during the period 1977-1991 suggests that water levels here have always been rather deep.

4.13 GROUNDWATER QUALITY

The electrical conductivity (EC) of water is a measure of its salinity. The more salts dissolved in the water, the higher the EC will be. In almost all the wells visited, the EC of the pumped water was measured (in micro S/cm at 25° C). The measurements not only gave an indication of the areal distribution of water quality but could also indicate its variation with water depth, because the measured value is often related to the depth from where the water is pumped. Fig. 4.18 shows the distribution of the electrical conductivity values over the Attaf Valley. The minimum value was 350, the maximum 1600, and the mean 676 microS/cm.

The coefficient of variation was calculated as 0.35. This represents a measure of deviation from the mean (standard deviation/mean), which implies, assuming a normal distribution of all values, that 67% of the EC-values were within the range (1-0.35) * mean and (1+0.35) * mean or 67% of the measurements had EC-values ranging from 439 to 913 microS/cm. The measured values were contoured and presented in Fig. 4.19.

NORADEP

,

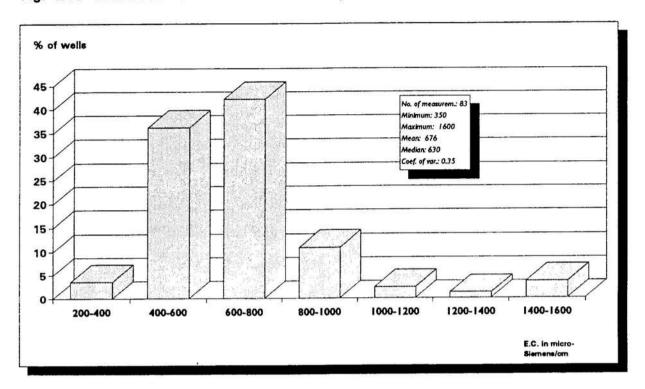
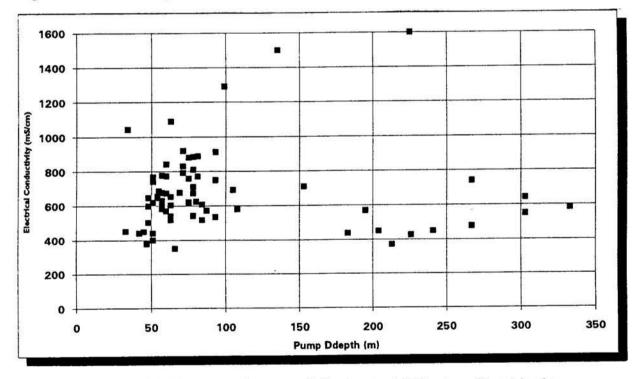
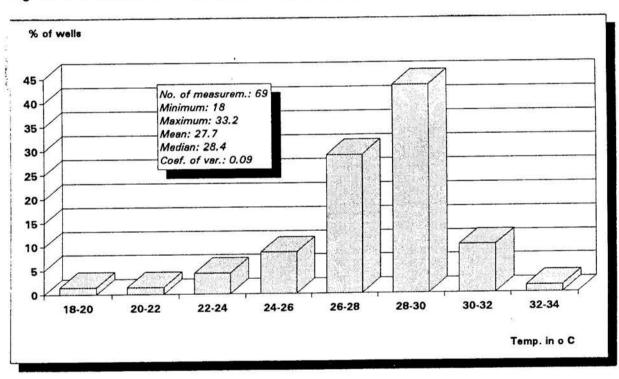



Fig. 4.18 Distribution of Electrical Conductivity

Fig. 4.20 Relationship of Electrical Conductivity to Water Depth

There is an area with high groundwater salinity (up to 1400 micro S/cm) in the southwest of the valley, near Amran Valley. In the higher part of the tributary valleys of Qa' Ashshams and Bayt Bin Shiran values of above 1000 microS/cm

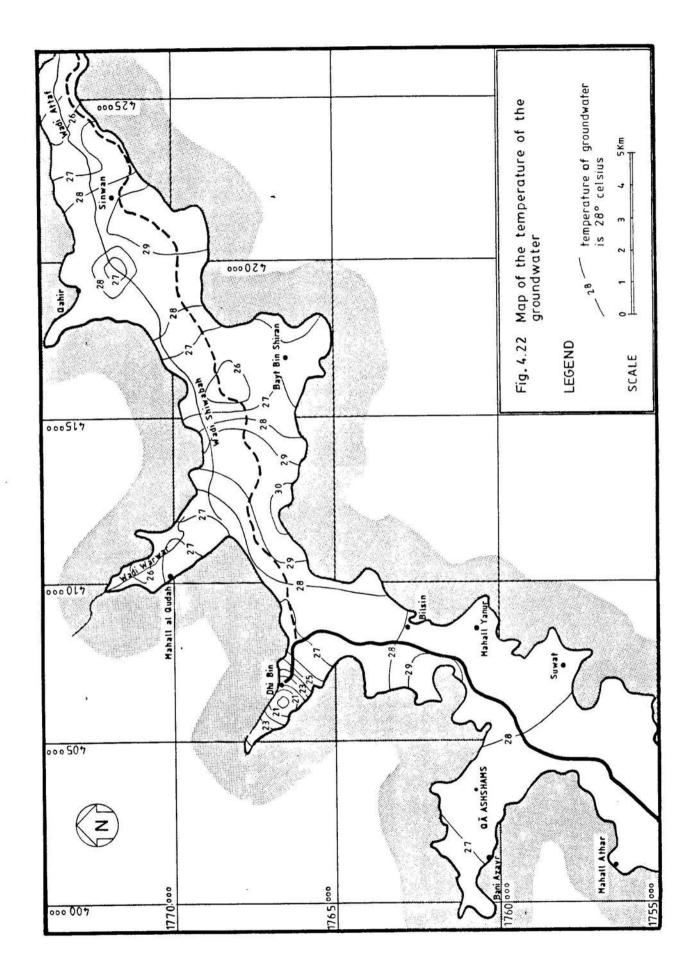

NORADEP

were also recorded. In general, the water quality, expressed in terms of EC, is good in the major part of the valley, ranging from 400-800 microS/cm. However, it is higher (20% of mean) than in the Amran Valley.

Fig. 4.20 shows the relationship (or rather the absence of relationship) between the measured EC and the depth of groundwater. Salinity does not seem to increase with depth. High salinity appears to be determined only by the presence of clayey (alluvium) or shaly (limestones) in the aquifer.

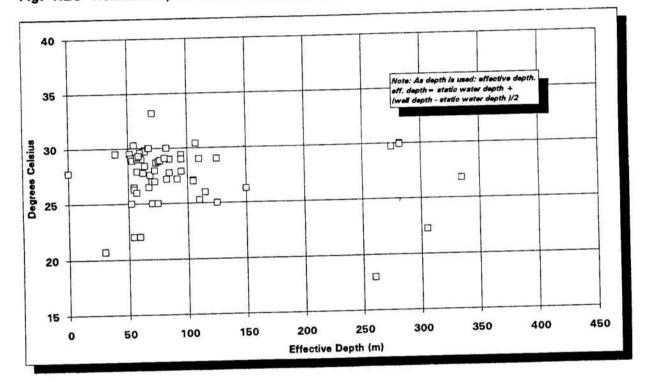
4.14 GROUNDWATER TEMPERATURE

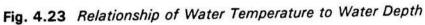
At most of the wells that were visited the temperature of the water was measured during pumping. The distribution of the temperature values is presented in Fig. 4.21. Temperatures range from 18 to 33 °C, with a mean and a median of about 28 °C. Dispersion is low: the coefficient of variation is only 0.09 and most measurements show values that range from 26 to 30 °C.



It should be noted that the mean groundwater temperature in the Attaf Valley is about 3 degrees higher than in the Amran Valley. The contoured measurement results in Fig. 4.22 show that higher temperatures occur on the volcanic side of the valley. Here temperatures rise above 29 °C. It seems reasonable to conclude that the geo-thermal gradient here is higher than in the limestones. On the opposite side of the valley the low temperature groundwater influxs from the wadi alluvium aquifers are clearly visible from the tributary valleys of Qa' Ashshams, Dhi Bin and Wadi Warwar, where water temperatures range from 21-27 °C.

YEM/87/015


36



NORADEP

.

To find out if a relationship exists between water depth and water temperature, values of temperature were plotted against the effective depth of the well. The effective depth was introduced to get a better indication of from what depth the water originates during pumping. It is defined as the depth to the static water level inside the well plus the difference of well depth and the static water level depth. In other words, the effective depth is the depth to midway between the static water level and the bottom of the well. No correlation between water depth and water temperature is indicated (see Fig. 4.23), probably as a result of the mix of data from the 'colder' and 'warmer' areas. Nevertheless, the main factor that probably determines the water temperature here is the geo-thermal gradient, which can show a temperature increase in volcanic areas of about 0.6° per 100 m depth.

5.1 LAND AREAS

The total area of land associated with the 94 wells visited in December 1991 was 1254 ha, of which 849 ha were cultivated and under irrigation command, and 405 ha were fallow (assumed local measure 1 libna = 64 m²). It must be emphasised that this land would have been divided into more than 94 individual holdings, since wells are often owned in partnership by more than one farmer. The areas of land associated with individual wells will therefore be called for the purpose of this report *well areas*, not farms.

Extrapolating from this data, by assuming a total of 113 well areas (see Section 4.2) and the same population distribution for the additional data, resulted in a total well area of 1494 ha, of which 1012 ha were commanded by irrigation and 482 ha were fallow (see Table 5.1).

ŭ	Based on data of 94 visited wells	Extrapolating, assuming a total of 113 wells
Total area of land associated with wells	1254 ha	1494 ha
Area Commanded by groundwater	849 ha	1012 ha
Fallow	405 ha	482 ha

Table 5.1 Breakdown of Land Area

It must be emphasized that these figures are based on areas where groundwater irrigation is applied, so rainfed farms are not included. This figure translates to an average command area of almost 9 ha per well.

Fig. 5.1 shows the distribution of the well areas. The smallest parcel was 2 ha, the largest 58 ha, an extensive farm in Qa' Ashshams where only 10 ha is used for groundwater irrigated cultivation, while the remaining part is fallow. Most areas range from 2 to 14 ha. The mean well area is 13.4 ha and the median 10 ha.

From Fig. 5.2 it can be seen that the area under groundwater command was much smaller: the mean was 9 ha (median 6 ha). The smallest plot was 1 ha and the largest 32 ha, a farm two km south of Dhi Bin and a farm three km southwest of Sinwan. The dispersion, expressed as coefficient of variation, was rather high (0.76). Most commanded areas had an area ranging from 2 to 8 ha.

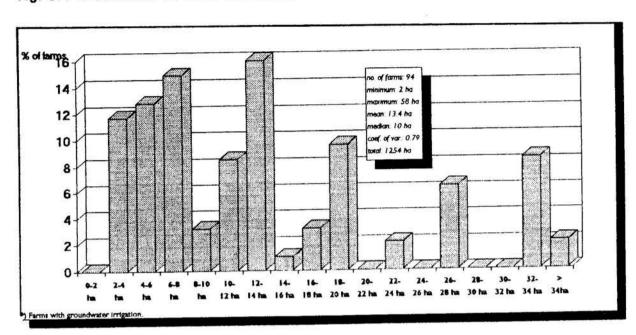
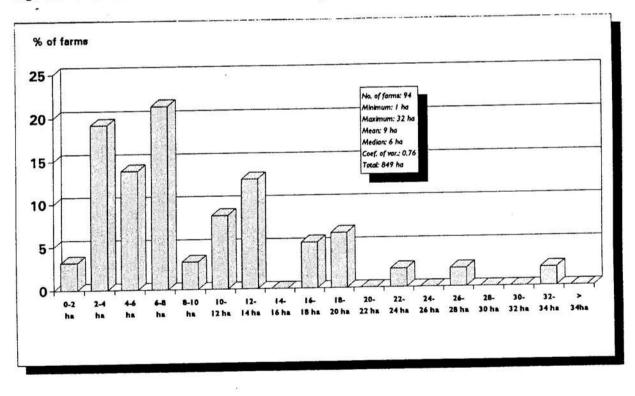



Fig. 5.1 Distribution of Total Well Areas

Fig. 5.2 Distribution of Areas Commanded by Groundwater (ha)

YEM/87/015

5.2 CROPS

As part of the well inventory questionnaire some information was collected on crops, concerning data on crop patterns during the seasons. The collected information covered the major and secondary crops cultivated and the irrigated area of each crop type during each season.

All these data are summarized in Table 5.2. Figs. 5.3 to 5.6 show the crop pattern during the seasons.

	Rabi'a		Rabi'a Sayf Kharif		rif	f Shita		
	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)	%
Grape	428.4	60.64	428.4	61.01	428.4	65.07	428.4	60.15
Qat	99.3	14.05	99.3	14.14	99.3	15.08	99.3	13.94
Alfalfa	12.8	1.81	12.8	1.82	12.8	1.94	12.8	1.80
Apple	2.6	0.37	2.6	0.37	2.6	0.39	2.6	0.36
Vegetable	1.6	0.23	1.6	0.23	1.6	0.25	1.6	0.23
Potato	1.3	0.18	1.3	0.18	1.3	0.19	1.3	0.18
Lentils	1.0	0.14	1.0	0.14	1.0	0.15	1.0	0.13
Papaya	0.3	0.05	0.3	0.05	0.3	0.05	0.3	0.04
Orange	0.3	0.05	0.3	0.05	0.3	0.05	0.3	0.04
Pomegranate	0.3	0.05	0.3	0.05	0.3	0.05	0.3	0.04
Sorghum	0.0	0.00	141.0	20.08	92.7	14.08	0.0	0.00
Wheat	136.3	19.30	13.2	1.89	9.3	1.41	121.2	17.01
Barley	22.2	3.14	0.00	0.00	8.4	1.28	43.1	6.06
Total	706.37	100.00	702.09	100.00	658.25	100.00	712.13	100.00

Table 5.2 Crops Cultivated Do	uring the Seasons
-------------------------------	-------------------

The two main crops are grape and qat. Grape accounts for about 62% and qat for about 14% of the groundwater irrigated in the Attaf Valley. Of the annual crops sorghum is the main crop during Sayf and Kharif (20 and 14% of the total cultivated area), while during Rabi'a and Shita wheat and barley are the most cultivated (22 and 23%).

These crop patterns demonstrate the attractiveness of groundwater irrigation to the farmer. In contrast to the traditional untrustworthy practice of rainfed cultivation and the even less reliable spate irrigated cultivation from which at the most one harvest per year was possible, most crops can now be sown and harvested the whole year round. Moreover, the high risk of crop failure as a consequence of low rainfall diminished significantly when pumped irrigation started. In the 1970s on the rainfed and spate water irrigated land the average loss of sorghum was still 40%, and of wheat and barley 50% (Rethwilm/Brandes, 1979).

Wheat is now sown two times per year by many farmers. The cultivation of sorghum in the winter (Shita) was also mentioned by many farmers. This would be either the ratoon phase of the sorghum sown in May and April or a second planting. Commonly sorghum is sown during April and May and, after harvesting the grain during September to October, the crop is allowed to ratoon solely for the fodder.

Wheat and barley, the other two traditionally cultivated crops in the valley, are sown during June and July. Harvest is during October and November. Usually the next crop is sown during November or December for harvest in March and April.

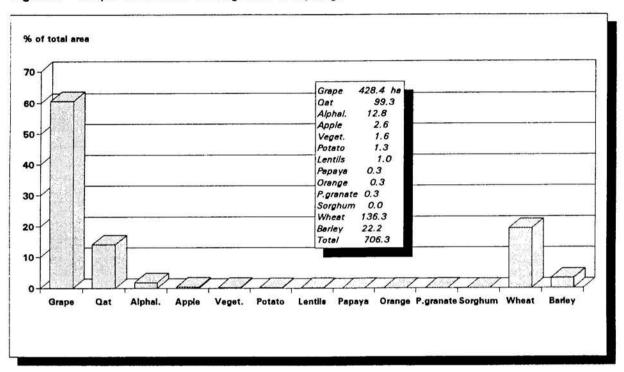
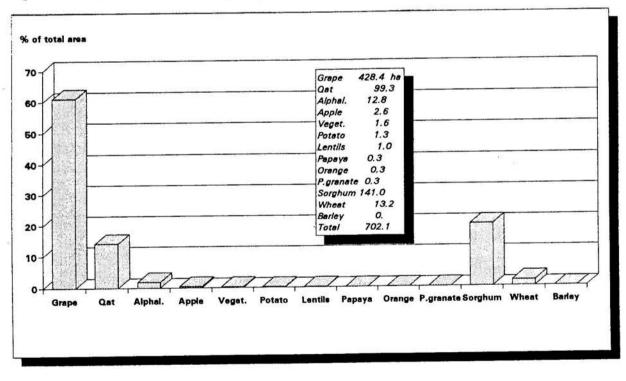



Fig. 5.3 Crops Cultivated During Rabi'a (Spring)

Fig. 5.4 Crops Cultivated During Sayf (Summer)

YEM/87/015

42

Fruit crops like grape, apple and pomegranate were introduced only recently by progressive farmers. The other most cultivated field crops are vegetables, potato,

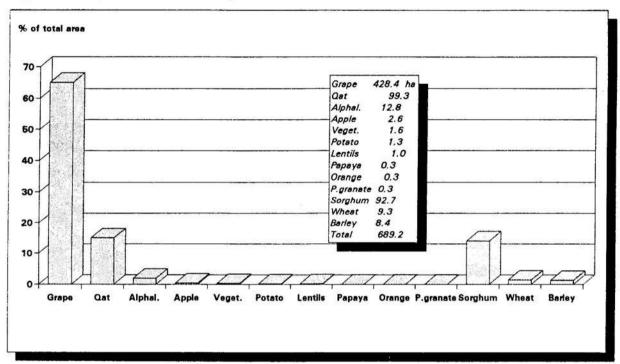
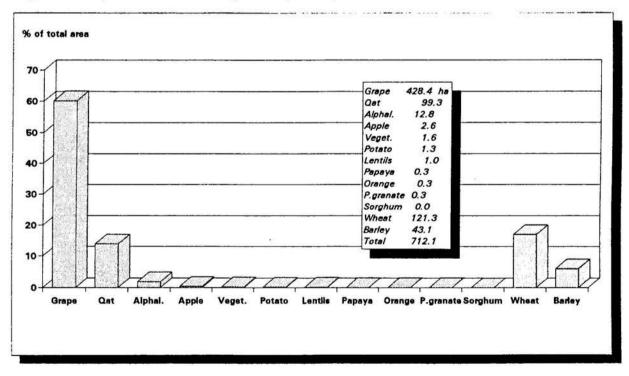



Fig. 5.5 Crops Cultivated During Kharif (Autumn)

 \mathbf{z}_{i}

NORADEP

YEM/87/015

 \tilde{E}

lentils and potato. Alfalfa is grown for fodder, but is second in importance to sorghum.

Both pure stand and inter-cropping patterns were observed. Large plots tended to show more pure stand cultivation (sorghum, wheat and barley) than the smaller plots where, generally, a more mixed crop pattern was noticed.

5.3. IRRIGATION PRACTICE

The water pumped was conveyed through earthen channels or pipes to the fields. According to field tests carried out by GTZ in Qa' Al Boun in 1979 water losses during conveyance in the traditional open irrigation channels were usually 50-65%, depending on the distance. Other water losses were a result of over-irrigation.

The irrigation methods used were border, furrow and basin. The border method was usually used for the irrigation of wheat and sorghum, furrow irrigation for potato, tomato and water melon and basin for the fruit crops grape, apple and pomegranate. Time intervals, between irrigation applications of 50-100 mm, ranged from 9 to 15 days depending on the crop type.

The highest frequency of irrigation applications was on grape, apple, tomato and alfalfa, the crops with the highest total costs per hectare, but which also give the greatest benefits (except for alfalfa). The lowest gross margins are on sorghum, wheat and barley (Amran Valley, Hossain/Nouman, 1991).

About 32% of the total cultivatable area of the Attaf Valley remains permanently fallow because of shortage of water.

5.4 USE OF FERTILIZERS

Crop rotation including a fallow was used to maintain soil fertility and to economise on the use of fertilisers. Both chemical fertilisers and organic matter were used, the first at regular intervals but on only 58% of the farms. Urea was the most used chemical fertiliser and chicken manure the principal organic fertiliser. The latter was added only once a year. Livestock waste was usually not used as fertiliser, but dried for fuel.

5.5 DOMESTIC WATER USE

Fig. 5.7 shows the distribution of the number of persons that depended on one well. A wide dispersion was observed in the number of persons (coefficient of variation = 2.6) that consumed water from one well: from eight to 6000, a well that supplied the drinking water to Bani Azayr village in Qa' Ashshams.

The average number of persons depending on one well was 285, but this figure was distorted by the high numbers consuming water from a few wells. The median, about 100 persons, gives a better picture.

YEM/87/015

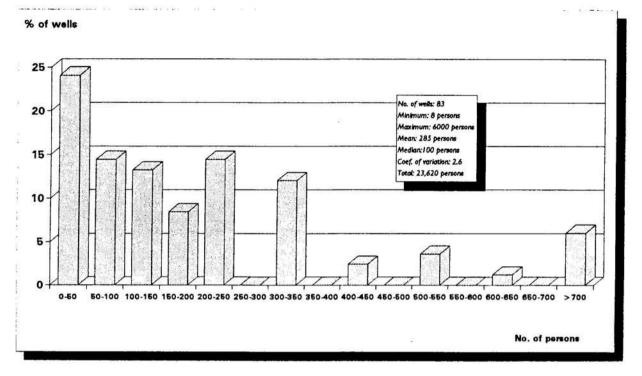


Fig. 5.7 Distribution of Number of Persons Consuming Water from One Well

A total number of 23 620 persons were dependent on 83 wells, being the total number of wells where domestic water consumption data were collected. When extrapolated to the total of 113 wells, and assuming the same distribution of data, a total number of 31 873 people consumed well water in 1991. This number might also indicate the number of inhabitants in the valley (see Table 5.3).

Table 5.3 Domestic Water

	No. of persons using water from the well	Domestic water use per well (assuming 40 l/day/capita
Per well: Mean Minimum Maximum	285 8 6000	4161 m³/year 117 m³/year 87 600 m³/year
Total: (based on 83 wells data)	23 620	344 852 m³/year
Grandtotal: (extrapolated, assuming a total of 113 operational wells)	31 873	465 346 m³/year

It must be remembered that many farmers sell the water from their well to consumers elsewhere in the valley. Transport was usually by tank-cars. The average number of persons per house or per family was about 12, so that a mean of 24 houses was supplied by one well.

NORADEP

Assuming an average daily water consumption of 40 I per capita the mean yearly domestic water use per well was determined at 4161 m³ (Amran Valley 4132) and a total water consumption from all the wells in the Attaf Valley at 465 000 m³ per year (see Table 5.3).

Livestock water consumption, low in relation to the domestic and agricultural water use (1.3 m³/year per sheep or goat or 9% of the human water consumption) has been neglected.

5.6 IRRIGATION WATER APPLIED

The present study is intended to deal with the water resources of The Attaf Valley with emphasis on groundwater and its use. The reason for including in the inventory information concerning cultivated crops and agricultural practices was to enable a fair appraisal to be made of the volume of return flow (or water loss) occurring during irrigation. The water loss would be valuable component of the water balance, representing the feedback of pumped groundwater to the aquifer. The return flow or irrigation water losses can be defined as the difference between the water requirements needed for the evapotranspirational demand of the cultivated crops and the volume of pumped water.

As has been explained in the chapter on crops a detailed description of the land use of each farmer would require information on crop types, cropping calendar and cropping patterns throughout the seasons. The collection of these data would be too elaborate and time consuming in the context of a well inventory. However, the restricted series of data collected concerning crops and land-use, combined with the qualitative data obtained in the SONDEO study, allow a reasonable estimate to be made of the yearly crop water requirements in the study area.

Firstly, an acceptable estimate of the total area commanded by groundwater has been determined (Table 5.1). Secondly, groundwater abstraction data are available for each season, and a clear general picture has been formed of the types of crops cultivated and the cropping pattern during the four seasons. However, collected field data on the irrigated area of each crop are not complete enough to permit the calculation of the various crop water requirements on a decade or monthly base.

A solution has been found by applying existing potential evapotranspiration data, valid for the neighbouring Amran Valley. Eger (1987) published values of crop water requirements for the main crop types. From this it appeared that most crops have a consistent average daily net crop evapotranspirational need of about 3.0 mm, when considering the whole growing period. These figures have been used to arrive at a total yearly crop water demand. Because calculations of applied water quantities are made on a yearly basis, these figures will be sufficient to arrive at an adequate estimate of the annual crop water requirements in the study area. Thus, an annual crop evaporational demand (ETc) of 1095 mm has been established for the groundwater irrigated part of the Attaf Valley.

Spate irrigation values have been derived from farmers' information and the local rainfall data.

YEM/87/015

From the evidence gathered during the SONDEO survey, backed up by the experience of agricultural extension staff, it is clear that:

- Not all of the area commanded by groundwater is irrigated at any one time, because not enough water is pumped to meet water requirements.
- Farmers' irrigation scheduling is not optimum.
- Water conveyance and application is not efficient: there is seepage from unlined conveyance canals (about 50% of the water is conveyed in pipes from pump to field-edge); land levelling is poor; the layout of basins, borders and furrows is not always ideal; and farmers tend to apply more water than the crop actually requires, leading to excessive deep percolation.

All the matters discussed above have taken into account in the compilation of Table 5.4, in which the volume of water abstracted in 1991 is balanced with domestic and irrigation usage, and the return flow to the aquifer through deep percolation.

14.83
0.48
14.35
1012
648
3679
35.8
2364
3.83
1315
126
19
1460
1460
fective water
- 1.1. "ACTOCIDE DECOMPTON" THE DECOMPTON STUDIES AND ADDRESS OF ADDRESS AND ADDRESS A ADDRESS ADDRESS ADDRE ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRES ADDRESS ADDRESS
(aec
3R Method)

Table 5.4 Attaf Plain - Annual Groundwater Use in 1991

It should be noted that surface runoff from irrigated areas due to inefficient water application is not specifically accounted for. In comparison with seepage losses, runoff is likely to be insignificant at the level of accuracy of the estimates presented in the table.

Fig. 5.8 shows the distribution of contributions from the several water sources used

NORADEP

for irrigation during the seasons, and demonstrates clearly that rainfall and spate irrigation represent only a minor contribution compared with groundwater.

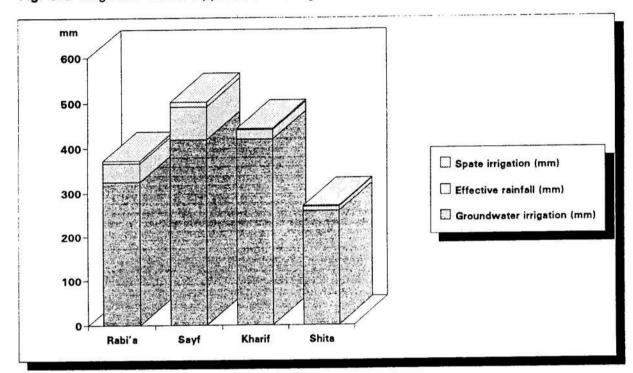


Fig. 5.8 Irrigation Water Application During the Seasons

6 THE COST OF PUMPING GROUNDWATER

A model has been made for the calculation of the cost of one hour of groundwater pumping and of one m³ of pumped groundwater. Various cost items have been taken into account in the calculation procedure. Costs were subdivided into investment costs and O&M (Operation and Maintenance).

All costs, including the investment costs, were treated as variable costs, ie. they expressed per operation hours not fixed for a certain number of years. The reason was that the lifetime of the most valuable components of the well and pumping equipment is not a fixed period, but depends on the farmer's pumping schedule, or the intensity of their use. For example, the pump and the engine have a lifetime of a certain number of operation hours, so a higher pumping intensity would result in a shorter lifetime, and the reverse.

The following assumptions were made:

- The lifetime of the well is 80 000 operation hours.
- The lifetimes of pump and engine are 40 000 operation hours.
- The lifetimes of reservoir and pumphouse are greater than the lifetime of the well.
- The higher cost of pumping from greater depths is fully represented by deeper and more costly wells, more powerful and thus more expensive pumps and engines, and higher diesel consumption rates per operation hour.
- Interest costs were not considered in the calculation model because the majority of the farmers in the Attaf Valley invest in wells from their own savings or by getting interest-free credit from private sources (friends or family).
- Opportunity costs are not accounted for in the model because the farmer, in general, only invests in his farm and does not realize that his capital (saved or borrowed) could yield a profit elsewhere.
- Discharge rate and diesel consumption are constant during the entire lifetime of the well and pumping equipment.
- Costs for deepening wells were not included, because the majority of the wells were drilled to such a depth in relation to the local water table, that deepening was not considered necessary during the calculation period of 80,000 operation hours.

In the model (Table 6.1) the calculation period was set at 80 000 operation hours, the assumed lifetime of the most valuable components of the well - the casing and the screen. In the Attaf Valley, where the average farmer pumps 3800 hours per year, this corresponds to a well lifetime of 21 years.

The pumping equipment, when considering its most costly components: the pump and the engine, has a much lower lifetime. This has been set at half the lifetime of the well or 40 000 operation hours, approximately corresponding with the lifetime given by the manufacturers. When operated at 3800 pumping hours per year, a lifetime of about 10.5 years would result for both the engine and the pump. Therefore, during the entire lifetime of the well, two sets of pumping equipment would be needed.

A. INVESTMENT COSTS	(1991 YR)		
1. Well construction			
Cost	WC YR		
Lifetime well	LW hr *)		
Well depreciation	WC/LW YR/hr		
2. Pumping equipment			
Cost first set	PC1 YR		
Lifetime first equipment	LW/2 hr		
Equipment depreciation	2PC1/LW YR/hr		
Cost second set	PC2 YR		
Lifetime second equipment	LW/2 hr		
Equipment depreciation	2PC2/LW YR/hr		
Total depreciation costs	(WC + 2PC1 + 2PC2	t)/LW YR/hr	
B. OPERATION AND MAINTENANCE COSTS	(1991 YR)		
1. Maintenance/repair	M YB/hr		
2. Diesel consumption	DC YR/hr		
3. Diesel delivery costs	0.1 DC YR/hr		
4. Lubrificants (oil & grease)	0.2 DC YR/hr		
4. LUDITICATIES (OIL & grease)		+	
Total O & M costs	(M + 1.3 DC) YR/hr		
Total costs per hour of pumping (A + B)	(WC + 2PC1 + 2PC2	2)/LW + M + 1.3DC	YR/hr
Well discharge	Q m3/hr		
Cost per 1m3 of pumped groundwater	((WC + 2PC1 + 2PC.	2)/LW + M + 1.3D(C) /Q YR
Example:			
	000000 1/0	Depreciation 3.95 YB/hr	
Well construction costs (WC)	300000 YR		
Cost first pumping equipment set (PC1)	200000 YR	5.00 YR/hr	
Cost second pumping equipment set (PC2)	350000 YR	8.75 YR/hr	
Lifetime well (LW)	80000 hr		
Lifetime pumping equipment (LW/2)	40000 hr		
Maintenance (M)	4 YR/hr		
Diesel consumption (DC)	16.5 YR/hr		
(5 l/hr x 3.3 YR/l)	• • • • • • • • • • • • • • • • • • •		
Well discharge (Q) 10 l/s	36 m3/hr		
	Investment costs	O&M costs	Total cost
Then, 1) cost per hour of pumping =	17.50 YR/hr	25.45 YR/hr	42.95 YR/h
and 2) cost per 1m3 of pumped water =	0.49 YR	0.71 YR	1.20 YR

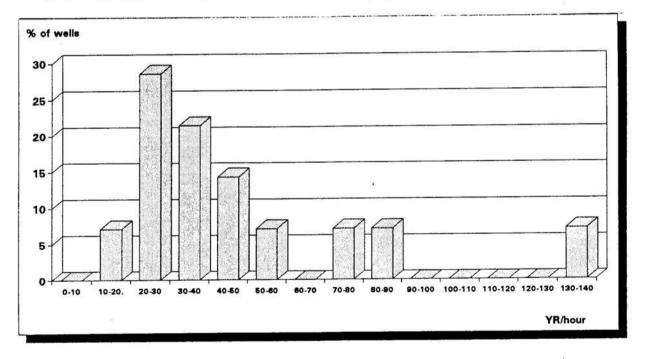
Table 6.1	Calculation	Model for	Pumped	Groundwater	Costs	(1991	YR)

The cost item "pumping equipment", collected as field data during the well inventory, generally included not only the pump and the engine but also the costs of reservoir, pump house and conveyance pipes (1991: 100 YR/metre length). However, these components have a lifetime longer than 80 000 operation hours and as a result do

YEM/87/015

*) hr = operation hour

not need to be renewed when a second set of pumping equipment is installed.

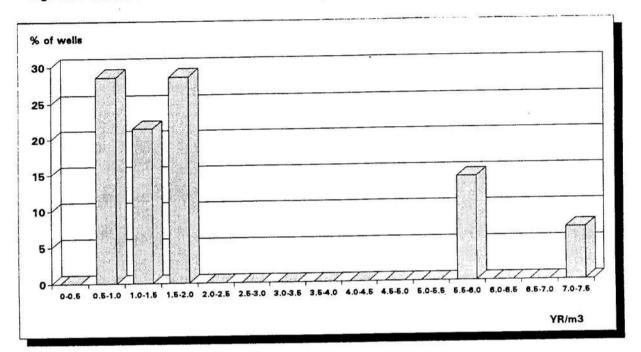

The formula in Table 6.1 were applied to the following data, which were available for most of the wells:

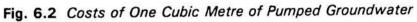
- The costs of well construction.
- The costs of pumping equipment.
- Well yields.
- Number of pumping hours per day.
- Daily engine diesel consumption.
- The price of diesel.

The calculation results are presented in Fig. 6.1 and Fig. 6.2. The average costs of one hour of pumping was YR 51.4, that of one m³ of pumped groundwater YR 2.5 of which 38% was capital cost, 36% for diesel and 26% operation and maintenance.

Assuming an average price of 2.5 YR/m³ then a total of YR 36.3 million was spent during 1991, pumping about 14.5 Mcm for irrigation purposes of which about YR 21.4 million was wasted by water losses.

The cost of one m³ of pumped water was calculated at the level of the pump. However, due to conveyance, application and scheduling water losses, not





all the pumped water will reach the crops effectively. This means that the price of water at the crop level would be higher. Assuming the estimated overall irrigation

NORADEP

efficiency of 41% as calculated in Table 5.4, then the average cost of the water at crop level would be YR 6.10, and the average yearly water costs per irrigated hectare (net application 913 mm) YR 55 670.

7 SUMMARY AND CONCLUSIONS

A total of 113 wells were inventoried. It was assumed that 90% of all existing wells were surveyed. The actual total number of wells was thus estimated at about 125, of which 113 were operational.

Questionnaires were filled out, each containing up to 120 data from each well site. Information collected included data on the well location, well details, pump characteristics, measured well observations, water use, well costs, among others.

Large areas of the Attaf Valley are covered with a carpet of basalt layers and/or basalt stones (pyro-clastics and clastic basalt). They remained fallow.

Only one dug well was found. Most dug wells have fallen dry during the last ten years because of reducing water levels. It is obvious that since the introduction of drilled wells the water levels fell to such a deep level that the manually digging and deepening of wells was forced to stop.

Serious groundwater development in the Attaf Valley started about 10 years (1971) later than in the Amran Valley (1962).

It is interesting to note that the main drilling activities occurred in the period from 1981 to 1987. Since 1987 the rate of drilling has dropped from 15 wells in 1987 to only three in the following year. 1990 and 1991 also show relatively very low figures.

Statistical analysis of the cumulative distribution of the number of wells constructed during the years showed that 50% of all existing wells were drilled after 1984, while the average well age is 7.5 years. The oldest well dates from 1971.

Almost all the wells inventoried were drilled wells. Only one dug well was encountered. Only two wells were reported to have been deepened once, a relatively very low figure when compared with the Amran Valley, where 23% of the wells had been deepened one or more times.

Casing diameters differ significantly from the diameters observed in the neighbouring Amran Valley: small diameters (8") dominated. They ranged from 8" to 12" (8" diameter: 58%, 10": 26% and 12": 14%). The lower section contained a series of 6 m long slotted pipes as a screen.

Well depths ranged from 50 m to 450 m. The average depth is 170 m. A relatively high concentration of deep wells exists in the southwest of the valley. Here, groundwater levels are very deep: from 200 to more than 350 m. There are two dominant groups of well depths: one ranging from 50 to 150 m (mostly wells in the northeast with shallow water depths) and one from 300 to 400 m (wells in the southwest with deep water levels).

The depths of most wells in relation to water level depths were such that a rather

high percentage of the wells may soon fall dry. The average aquifer penetration was 58 m. If groundwater should drop 30 m over the whole plain, then 35% (Amran Valley: 9%) would fall dry. This percentage would increase to a minor extent when the drawdown brought about by pumping is also considered.

Water was pumped in 73% of the wells by vertical turbine (lineshaft) pumps coupled via crossed webbing belts to diesel engines. However, a relatively high percentage (27%) of the wells were equiped with electro-submersible pumps driven by electrical power generated by high capacity engines, most of which generally were found in the southwest of the valley where water levels are very deep.

72% of the pumps were supplied by two manufacturers: Caprari (68%) and Iperson (8.5%), while the remaining 28% were fabricated by nine different manufacturers. The pump column diameter was mostly three inch (71% of all wells) or four inch (19%).

The same level of standardization was noticed among the engines: the Japanese engines comprise about 60% (Yanmar 46% and Mitsubishi 14%). The remaining 40% was divided over 17 makes. The engines had capacities ranging from 20 to 35 horsepower for the lineshaft pumps and 74 to 250 kiloWatt for the electrosubmersible pumps.

The average age of the wells and the pumps (in 1991) was 7.5 years. During the period 1988-1991 more pumps were installed than wells constructed, replacing pumps installed before this period.

Well discharge rates varied from about 1.4 l/s to 25 l/s, with a mean of 8.8 l/s.

Well construction costs ranged from YR 66 000 (a 66 m deep well) to YR 500 000 (a 350 m deep well). Median well costs were YR 254 000. In general, the average price per metre for this period was about YR 1250.

Pumping equipment costs had a much larger variation: from YR 30 000 up to YR 1 000 000 (a 340 m deep well); the median was YR 238 000.

Both well construction and pumping equipment costs were higher than in the Amran Valley. This can be partly explained by the younger age of the wells and pumps in the Attaf Valley (more recent prices) and the expensive engines for the electo-submersible pumps.

The average farmer switches the pump on at sunrise and switches the pump off at sunset, throughout the seasons. This is reflected in the mean yearly number of pumping hours per day: 12. Pumping activities are highest during Sayf (mean 13.7 hrs/day), followed by Kharif (mean 13.6 hrs/day), Rabi'a (mean 11.9 hrs/day) and Shita (mean 10.5 hrs/day).

Over the whole year the average number of pumping days per month was 26, pumping hours per month 339, an average of 11.3 hours per day.

10.6% of the wells were permanently out of order, and on average the wells were

YEM/87/015

not pumping 6% of the time. These percentages were taken into account when calculating the seasonal and total yearly abstracted groundwater volumes.

A yearly total of approximately 15 million m³ of groundwater abstraction was estimated for the Attaf Valley in 1991. The highest growth in groundwater abstraction occurred from 1981 to 1987.

A (very rough) estimate of all the groundwater pumped in the Attaf Valley, using figures from 1971 (when abstraction became significant) up to 1991, amounted to about 114 million m^3 . This represents a water layer of 0.8 m depth covering the whole Attaf Valley.

Expressed in terms of lost aquifer, assuming an average effective porosity (specific yield) of 5%, then the volume pumped during 20 years corresponds to a lost saturated aquifer thickness of 100/5 * 0.8 = 16 metres over the whole Attaf Valley.

Groundwater depths showed a wide range in the Attaf Valley from 25 m (4 km southwest of Sinwan) to 320 m (4 km southeast of Dhi Bin) and up to 370 m at 1 km northwest of Bilsin).

The southwest part of the valley (west of UTM 411 000) had extremely deep groundwater levels (ranging from 160 to 370 m). The northeast part of the valley (east of UTM 411 000) had much lower water depths, varying from 25 to 85 m. This sudden change in the groundwater depth was caused by a very high topographic gradient of 100 m over a distance of 1 km (10%) in the valley east-north-east of Dhi Bin, resulting from the downthrow along a large southeast-northwest fault.

Excessive pumping was taking place in the area southeast of Dhi Bin for irrigation but also for the water supply of this village. The area had a large elongated cone in the water table. The natural northeastwards groundwater flow was reversed.

Piezometric levels varied between 1880 m in the southwest near Mahall Athar and 1440m near Wadi Attaf in the northeast, representing an average hydraulic gradient of 440 m over a distance of about 39 km (= 1.13 %). However, the main drop in groundwater level occured from the west of Suwat to Bilsin, where over a stretch of 4 km the water level falls a considerable 240 m. Here the hydraulic gradient was 6 %. The remaining part of the Attaf Valley had a gradient of only 0.7 %.

No long term data on monitored water levels were available.

A first impression is that groundwater depletion in the Attaf Valley is not as serious as in the Amran Valley. It is true that depths to groundwater in the southwest are very large, but the relatively low drop in water level near the Amran Valley during the period 1977-1991 suggests that water levels here always have been rather deep.

The distribution of the electrical conductivity values of the groundwater over all the measurements carried out in the Attaf Valley showed a minimum value of 350, a maximum of 1600 and a mean of 676 microS/cm.

An area with high groundwater salinity (up to 1400 microS/cm) was situated on the

NORADEP

southwest margin of the valley near Amran Valley. In the higher parts of the tributary valleys of Qa' Ashshams and Bayt Bin Shiran values of above 1000 microS/cm were also measured.

In general water quality, expressed in terms of EC, was good in most of the valley, ranging from 400-800 microS/cm. However, it was higher (20% of mean) than in the Amran Valley.

Groundwater temperatures ranged from 18 to 33 °C, with a mean and a median of about 28 °C. Dispersion was low: the coefficient of variation amounted to only 0.09 and most measurements showed values that ranged from 26 to 30 °C.

The mean groundwater temperature in the Attaf Valley was about 3 degrees higher than in the Amran Valley. Higher temperatures occured at the volcanic side of the valley. Here temperatures rose above 29 °C. It seems reasonable to conclude that the geo-thermal gradient here is higher than in the limestones.

On opposite side of the valley low temperature groundwater influxs take place from the wadi alluvium aquifers of the tributary valleys of Qa' Ashshams, Dhi Bin and Wadi Warwar. Here, water temperatures ranged from 21-27 °C.

No relation was observed between data on water depths and water temperatures. Probably as a consequence of the mixing of data of measurements from both the 'colder' and 'warmer' areas.

The total cultivated area of the 94 visited well areas amounted to 1254 ha of which 849 ha were tilled land commanded by groundwater, while 405 ha were fallow (assumed local measure 1 libna = 64 m²). Extrapolating to an assumed number of wells equal to 113 resulted in a total well area of 1494 ha, of which 482 ha was fallow. These figures translated to an average well area of almost 9 ha.

The distribution of the well areas gave the following: the smallest parcel was 2 ha, while the largest was 58 ha. Most farms had an area ranging from 2 to 14 ha. The mean well area was 13.4 ha and the median 10 ha.

The mean commanded area was 9 ha (median: 6 ha). The smallest was 1 ha and the largest 32 ha. Most command areas ranged from 2 to 8 ha.

The two main crops were grape and qat. Grape accounted for about 62% and qat for about 14% of all the groundwater irrigated area in the Attaf Valley. Of the annual crops sorghum was the main crop during Sayf and Kharif (20 and 14% of the total cultivated area), while during Rabi'a and Shita wheat and barley were the most cultivated (22 and 23%).

Only on 58% of the farms were fertilisers applied. Urea was the most used chemical fertiliser and chicken manure the principal organic fertiliser.

The distribution of the number of persons that consumed water from a well gave the following statistics: minimum eight to an extremely high maximum of 6000 persons (for a village water supply). The average number of persons depending on one well

YEM/87/015

56

was 285, but this value was distorted by the number of persons consuming water from only a few wells. The median of about 100 persons, gave a better picture.

Assuming a total number of 113 active wells in the Attaf Valley, then a total number of 31 873 people consumed well water in 1991.

Assuming an average daily water consumption of 40 l per capita, the mean yearly domestic water use per well would be 4161 m³ (Amran Valley: 4132 m³) and a total water consumption from all wells at 465 000 m³ per year.

The gross irrigation water applied was estimated at 14.35 Mcm annually. At the low overall efficiency assumed (38%), about 9 Mcm of this would return to the aquifer as deep percolation.

A model was made for the calculation of the cost of one hour of groundwater pumping and of one m³ of pumped groundwater. The average cost of one hour of pumping was YR 51.4, and of one m³ of water YR 2.5.

Assuming an average price of 2.5 YR/m³ of pumped groundwater, then a total of YR 36.3 million was spent during 1991 in pumping about 15 Mcm of which about YR 21.4 million was wasted through water losses.

The average cost of the water at the crop level was estimated at YR 6.10/m³ and the average yearly water costs per irrigated hectare (913 mm net applied) YR 55 670.

YEM/87/015

ARAB ORGANISATION FOR AGRICULTURAL DEVELOPMENT, 1984 The Integrated Rural Development Project in Hajjah Province, YAR.

BERNHARDT C, 1980 Water Planning for Yemen, Report of the CID Team

CHAUDRY, MA, Estimating Water Requirements for Efficient Water Sector Planning: Projected Estimates for the Agricultural Sector. Seminar on 'Economic and Social Issues in Water Resources Development and Management in Yemen' TS of the HWC, Sana'a, 1991.

DHV CONSULTING, 1988 Tihama Basin Water Resources Study, YAR, Ministry of Agriculture and Fisheries/TDA, 8 Volumes.

EGER, H, 1987 Runoff Agriculture, a Case Study about the Yemeni Highlands, Dr. Ludwig Reichert Verlag, Wiesbaden.

FAO, 1977 Crop Water Requirements. FAO Irrigation and Drainage Paper no. 24, Rome, 1977.

GITEC/DORSCH, 1988 Improvement and Expansion of Water Supply and Sanitation in Provincial Towns in YAR. Seismic Refraction Profiling, Hydrogeological Evaluation.

VAN DER GUN, JAM, 1986 High Rates of Groundwater Abstractions in the Yemen Highlands. TNO-DGV, the Netherlands

VAN DER GUN, JAM, 1989 Geohydrological Investigations in Relation to Long-Term Groundwater Resources Management Aspects in the YAR.

HONIJK, WJ, 1985 The Drilling of Deep Water Wells in the U.A.E. Project 21/81. Ministry of Agriculture and Fisheries, Dubai.

HONIJK, WJ, 1988 Groundwater Development for Irrigation and Drainage in Tahta (Nile Valley). IWACO, RIGW, Cairo.

HOSSAIN, MM, NOUMAN, S, 1991 Agro-ecosystem Survey in Selected State Farms Qa'Al Boun, Hatarish and Jihana. UNDP/FAO/MAWR YEM/87/001.

NORADEP

JAPAN INTERNATIONAL COOPERATION AGENCY, 1980 Hajjah Province Integrated Rural Development. Ministry of Agriculture and Fisheries

JUNGFER, EV, 1984 Das Wasserproblem in Becken von Sana'a. Sonderdruck aus: "Entwicklungsprozesse in der Arabischen Republik Yemen." Dr. Ludwig Reichert Verlag, Wiesbaden

JUNGFER, EV, 1987 Zur Frage der Grundwasserneubildung im Trockenraumen. Erlanger Geographische Arbeiten.

KLINSKI, T, 1983 Technical Report no.1 on Hydrogeological and Hydrological Data Available in PDRY and YAR. UNDTCD, Sana'a/Aden

MOHAMED IBRAHIM ELANBAAWY, 1985 Geology of Yemen Arabic Republic.

RETHWILM, D, BRANDES, W, 1979 Proposal for Follow-on Measures for the Al Boun Project, GTZ, Hannover

RUSHTON, KR, REDSHAW, SC, 1979 Seepage and Groundwater Flow., John Wiley and Sons, New York.

SNAMPROGRETTI, 1985 Feasibility Study for the Agricultural and Rural Development Project in Sa'dah Province, 2 Volumes

TIBBITTS, GC, AUBEL, J, 1980 Groundwater Resources Investigations in the Amran Valley. U.S. Geological Survey Open File Report, USGS Reston, Virginia.

USAID/USGS, 1978 Groundwater Resources in the Amran Valley.

USAID/YOMINCO, 1982 Data on the Climate of the Amran Region, Sana'a 1982.

WAGNER, W, 1982 Report on a Short Mission to the Al Boun Project, YAR, GTZ

WAGNER, W, NASH, H, 1978 Preliminary Appraisal of Groundwater Occurrence in the Amran Valley, YAR, GTZ.

WORLD BANK, 1986 Yemen Arabic Republic Agricultural Strategy Paper. Report no. 5574 - YAR

WORLD BANK, 1988 Northern Regional Agricultural Development Project Volumes I and II, Farmod

YEM/87/015

YOMINCO-TNO (DGV), 1985 Water Resources of the Sa'dah Area. Report WRAY-3.1

Attaf: Appendix 1

APPENDIX 1

PROCESSING OF THE

WELL INVENTORY DATA

NORADEP

APPENDIX 1 PROCESSING OF THE WELL INVENTORY DATA

A tailor-made database computer program was been composed for the data entry of the NORADEP well inventory results. To minimize errors during data entry, the layout of the pages on the screen was made the same as the pages of the questionnaire. Each record in the database corresponded with a complete well inventory sheet and had space for the 123 fields necessary to cover all the data of the sheet. A total of 113 wells were been surveyed in the Attaf Valley, so 113 times 123 is 13 900 data had to be entered and subsequently processed and interpreted.

The entry of data was carried out by two Yemeni engineers. The entry of these data did not cause any bottle-neck in the reporting activities. However, the verifying and correcting of wrong data copied from the questionnaires caused a substantial delay. Also it turned out that altitudes measured with the altimeter showed errors up to 10%. Therefore, most of the well site altitudes had to be determined all over again by interpolating from the elevation contour lines on the 50 000 scale topographic maps. Many errors were also made in expressing the well locations in UTM coordinates.

Analysis and interpretation of all the stored data was carried out with the help of several application computer programs, such as statistical, spreadsheet, contouring and graphics. The reporting was done with a word processing and a desktop publishing program.

Attaf: Appendix 2

APPENDIX 2

WELL INVENTORY

QUESTIONNAIRE

10

NORADEP

SSHARDA

WELL INVENTORY QUESTIONNAIRE NORADEP

- First, plot the well location and its number on the map. - Then, make sketch of the well location on the next page.

- In case of multiple-choice: select number
- Large letters: fill out in the field.
- Small letters: fill out after fieldwork.

A. WELL LOCATION

1.	WELL NUMBER (number topo map + serial number) for example: <i>1643B1/31</i>	
2.	ALTITUDE	••••••
3.	NAME of NEAREST VILLAGE	
4.	NAME of WADI NEARBY	• • • • • • • • • • • • • • • • • • • •
5.	WELL OWNER	
6.	(refer to location	
	• • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *

Fill out after fieldwork:

7.	COORDINATES (UTM),	NORTHING	···· B	. EASTING	. m.
8.	SUBREGION NUMBER (see	subregion map)			
9.	DISTRICT NUMBER (see	district map)			
10.	GOVERNORATE		•••	1. Sana'a 2. Hajjah 3. Sa'dah	
11.	OLD WELL CODE				
12.	TEAM NUMBER		• • •		

<u>SKETCH OF WELL LOCATION</u> (Location of well with reference to landmarks such as school, mosque, village, road, etc.)

1 NORTH

B. WELL DETAILS

1.	YEAR of CONSTRUCTION	19
2.	TYPE of WELL	1= hand-dug 2= machine-dug 3= hand-dug + deepened by machine-dug
3.	DIAMETER of WELL	••••• m
4.	DIAMETER of CASING	inch
5.	WELL DEPTH	••••• m
6.	NUMBER of TIMES DEEPENED	0 / 1 / 2 / 3 / 4
7.	MATERIAL of CASING or LINING	1= steel 2= pvc 3= cement 4= bricks 5= rock 6= other
8.	SCREEN or OPEN INTERVAL from	m tom.
9.	DESCRIPTION of UNDERGROUND:	
	TYPE of LITHOLOGY	FROM (m) UP TO (m)
	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
10.		

NORADEP

YEM/87/015

٠

C. PUMP DETAILS

1.	PUMP INSTALLED	yes/no
2.	YEAR of INSTALLATION PUMP	19
3.	PUMP TYPE1= lineshaft2= electro-submersible3= centrifugal	
4.	PUMP NAME	
5.	PUMP MODEL	
6.	NUMBER of STAGES (bowls)	
7.	Only in case of ELECTRO-SUBMERSIBLE and CENTRIFUGAL PUMP CAPACITY bhp/ rotations	
8.	DIAMETER of PUMP COLUMN inch	ŝ
9.	ENGINE NAME	
10.	ENGINE MODEL	
11.	ENGINE CAPACITY bhp/ rotations	
12.	DEPTH of PUMP m	
13.	HOW MUCH DIESEL or PETROL IS USED PER DAY lit	.res/day
14.	COMMENTS	

•

D. OBSERVATIONS AT WELL

1.	DATE of OBSERVATION	day month year /19
2.	TIME of OBSERVATION	hoursmin
3.	DEPTH to STATIC WATER LEVEL	m
		1= measured 2= communicated
4.	DEPTH to DYNAMIC WATER LEVEL	m
	•••	1= measured 2= communicated
5.	HOW MANY HOURS WELL IS PUMPING NOW	hours
6.	TIME SINCE PUMPING STOPPED	hours
7.	SEASONAL VARIATION of WATER LEVEL	m
8.	TIME TO FILL LITRE BARREL	sec
9.	TEMPERATURE of WATER	⁰ Celsius
10.	EC or ELECTRICAL CONDUCTIVITY	microS/cm
11.	IS WATER SAMPLE TAKEN (if yes, put well number and date on bot	yes/no tle)
12.	COMMENTS	
	· · · · · · · · · · · · · · · · · · ·	

YEM/87/015

•

E. WATER USE

1.	WATER IS <u>PRINCIPALL</u>	Y USED FOR W	1= irrig	ation 2= live-stock tic 4= industry	
2.	WHAT IS THE TOTAL	FARM AREA	Α?	libnas o	r ma'ads
3.	WHAT IS THE IRRIGAT	ED FARM AREA	Α?	libnas o	r ma'ads
4.	HOW MANY M ² IS 1 LIE	NA (MA'AD)	IN THIS A 1 libna	REA ? (ma'ad) = .	m ²
5.	MAIN TYPE OF IRRIGA	TION APPLIE	D	1= border 3= furrov 5= sprinkl	4= drip
		RABI'A	SAYF	KHARIF	<u>SHITA</u>
6.	MAJOR CROP TYPE:				
	irrigated area for this crop:		• • • • • •		• • • • • •
7.	CROP TYPE NO. 2				
	CROP TYPE NO. 3				
	CROP TYPE NO. 4	• • • • • • •	• • • • • •	•••••	• • • • • •
	irrigated area for crops 2/3/4		• • • • • •	•••••	• • • • • •
8.	IS ALSO SPATE WATER	IRRIGATION	APPLIED		yes/no
	ONLY IN	CASE OF DO	MESTIC US	SE OF WATER:	
9.	DOMESTIC WATER SUPP	LY FOR:	• • •	1= some houses 2= village 3= town	
10.	HOW MANY HOUSES DRI	NK OF THE WI	ELL		houses
11.	HOW MANY PERSONS DR	INK OF THE	WELL		.persons
12.	NAMES of VILLAGE(S)	SUPPLIED B	Y THE WEL	L:	
			1 2		
13.	NUMBER of WELLS in	the VILLAG	E(S)		wells

YEM/87/015

NORADEP

•

E. WATER USE (continued)

14. IS WELL SOMETIMES DRY ? yes/nd 15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1: Rabi'a 2: Sayf 3: Eharif 4: Shita 3: Eharif 4: Shita 17. HOW MANY HOURS of PUMPING per DAY 18. HOW MANY DAYS of PUMPING PER MONTH 19. HOW MANY DAYS A YEAR ARE LOST FOR MAINTENANCE AND REPAIR OF WELL 20. COMMENTS		<u>F. C</u>	COSTS
15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1: Rabi'a 2: Sayf 3: Eharif 4: Shita 3: Eharif 4: Shita 17. HOW MANY HOURS of PUMPING per DAY 18. HOW MANY DAYS of PUMPING PER MONTH 19. HOW MANY DAYS A YEAR ARE LOST FOR MAINTENANCE AND REPAIR OF WELL 20. COMMENTS		•••••••••••••••••••••••••••••••••••••••	
15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1= Rabi'a 2= Sayf 3= Eharif 4= Shita 3= Eharif 4= Shita 17. HOW MANY HOURS of PUMPING per DAY 18. HOW MANY DAYS of PUMPING PER MONTH 19. HOW MANY DAYS A YEAR ARE LOST FOR MAINTENANCE AND REPAIR OF WELL 20. COMMENTS			
15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1: Rabi'a 2: Sayf 3: Kharif 4: Shita 17. HOW MANY HOURS of PUMPING per DAY 18. HOW MANY DAYS of PUMPING PER MONTH 19. HOW MANY DAYS A YEAR ARE LOST FOR	20.		
15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1: Rabi'a 2: Sayf 3: Eharif 4: Shita 17. HOW MANY HOURS of PUMPING per DAY 18. HOW MANY DAYS of PUMPING PER MONTH	19.		
 15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1= Rabi'a 2= Sayf 3= Eharif 4= Shita 17. HOW MANY HOURS 		of PUMPING PER MONTH	
 15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1= Rabi'a 2= Sayf 3= Kharif 4= Shita 	17.		•••••
 15. IF YES, AFTER HOW MANY HOURS of PUMPING ? hours 16. WELL IS DRY in WHICH SEASON ? 1= Rabi'a 2= Sayf 	17	[3] 사망 (2) 20 20 - 21 20 20 20 20 20 20 20 20 20 20 20 20 20	SAYF KHARIF SHIT
	16.	WELL IS DRY in WHICH SEASON ?	2016년 2월 - 대양민이 영양가입니다. 영양이 여섯 - 전양이 영양이
14. IS WELL SOMETIMES DRY ? yes/no	15.	IF YES, AFTER HOW MANY HOURS of	PUMPING ? hour
	14.	IS WELL SOMETIMES DRY ?	yes/1

1.	COSTS of WELL CONSTRUCTION	YRial
2.	COSTS of WELL EQUIPMENT (pump, engine, pipelines,	YRial
	reservoir, etc.)	
3.	COSTS OF 1 LITRE OF FUEL	YRial

.

G. MISCELLANEOUS

1.	IS FERTILIZER APPLIED?	yes/no
2.	IF YES, TYPE OF FERTILIZER	
3.	COMMENTS	
	• • • • • • • • • • • • • • • • • • • •	

.

Attaf: Appendix 3

APPENDIX 3

WELL INVENTORY

SUMMARIES

e;

NORADEP

-
5
T
~
2
ā.
5
>
ō
E
3
.E
-
ş.
0
10
ο

	Alage	Soo	Coordinates Altitude	Altitude	Tear	Nell	Dismeter	Screen	undo/	Year	Depth	Depth	Mell	10	BIENA	RSB .	dula 1	ز لا	Amual
é	(meatrest)	5	(m5)	vde m	*	depth	Casing	From	\$	fist.	*5	\$	yfeld	farm size	Irrigtd Domest	omast.		¥	abst.
		z	ш	Ē	constr.	Ē	(inch)	Ê	E	dund	(m) durind	water (m)	(12)	(a)	(Jac) >	(SHOPE)	() ()	25 o C	(Em 0001=)
	MAHAL ALMAJZAR	1762200	406800	1976	68	350	ß	326	350	8	303	200	6.5	32.0	19.2	300	29.7	550	8
N	AL AASAR	1760900	405600	1975	82	330	80	254	2002	82	126	8		12.8	19.2				
60	MAHAL ALMAJZAR	1762500	406700	1975	68	340	80	310	340	8	303	80		9.6	7.7	10			
4	MAHAL ALMAJZAR	1763800	407200	1870	8	360	8		360	8	315	800		12.8	12.8	202			
B	GADER - THIBIN	1784900	407500	1810	83	388	80		398	84	295	246		32.0	32.0	8			
ø	NIBIH	1765800	407700	1817	88	312	80		312	88	257	292		12.8	12.8	150	30.0	471	
4	NIBIN	1785850	406750	1816	18	320	80			81	522			3.2	0.6	100			
*	NIBIN	1786250	407450	1840	8	320	80	862	928	68	303	062					222	640	
8	NIGHT	1765650	409300	1810	85	345	80	333	345	8	243	240		12.8	6.4	400			
\$	HAIDUA- AUOLAH	1765050	407800	1825	18	312	8	2889	312	81	267	252	13.9	22.4	22.4	300	50.9	740	150
Ŧ	NIBIN	1765450	406650	1820	5 8	312	80	882	312	58	267	252		22.4	22.4	10			
12	NIBIH	1765000	407400	1835	8	312	80	288	312	8	267	252		19.2	16.0	8			
13	THIBINALIOLAH	1765900	409500	1850	81	350	80	338	350	8	333	320	12.5	19.2	19.2	200	28.8	583	8
#	NIBIHL	1765750	408700	1860	88	350	80	339	350	88	333	320		12.8	12.8	200			
18	NIBIHL	1787200	405500	1815	8	360	8	380	360	84	285	2568		19.2	6.4	300			
18	NIBIHL	1766800	407400	1815	8	360	œ	348	360	8	273	258		19.2	16.0	808			
17	WARWAR	1768600	411100	1670	81	170	8		170	81		<u>6</u>		4.5	4.8	15			
18	WARWAR	1768700	411000	1670	F	130	æ		130			10		3.2	3.2	15			
18	WARWAR	1768900	410950	1670	84	100	8	88	8	84	8	65	18.8	19.2	19.2	8		623	082
2	WARWAR	1769000	410800	1660	8	8	12		120	28		۶	17.9	7.7	7.7	8	6.75	687	218
5	WARWAR	1769100	410850	1660	8	110	12		110	08		۶		9.9	3.2	8			
2	SHE'AP NAKHAS	1769500	410500	1680	87	8	10	2	8	88		۶		32.0	25.6	8			
8	WARAWR (OM ALEY.	1769700	410400	1680	8	130	12	121	130	82	8	8	20.02	12.8	12.8	8	100	912	8
24	WARWAR	1770200	410300	1690	R	R	5	140	120		83	8	8.1	19.2	6.4	200		749	8
*	WARWAR	1770400	410200	1580	84	160	12	145	130	84		۶	9.0	6.4	6.4	150	26.0	591	67
8	ALKHEBAH	1770800	409900	1700	87	200	80	170	200	87	153	8		12.8	12.8	100	105	710	
51	BAM DALLAM	1770900	410200	1700	62	300	10	265	300	62	158	10		25.6	25.6	8			
*	ALKHEPAH	1770850	410550	1700	8	120	8	114	120	63	105	8	6.6	1.9	1.9	20		069	61
2	BAIT ALSHETWE	1768800	411700	1550	81	150	80		150	61	84	8	6.3	12.8	12.8	10		519	8
8	WADI AR RAKIYAH	1767650	413100	1643	87	105	12	81	105	87	81	42	10.5	4.5	3.2	50	28.7	887	118
81	WADI AR RAKIYAH	1766800	413250	1655	68	100	12	8	10	68	7	۴	7.7	7.0	4.5	200		062	149
8	ALJOLAH NAKHADA!	1766500	412800	1590	88	8	9	28	8	86	63	8		25.6	16.0	8			
8	ALJOLAH NAKHADAI	1766200	412900	1740	z	88	80	62	88	84	63	55		25.8	16.0		33.2	603	
3	JOLAH NAKHADAH	1766700	411900	1740	91	128	8	108	126	6	83	8		9.0	6.4		30.4	536	
88	BAIT NASER AR RAK 1767500	1767500	414150	1620	7	8	12		8	4	75	8	4.9	1.9	1.9	200	28.8	880	151
\$	BAIT NASER AR RAK 1767550	1767550	414200	1620	88	82	8	74	8	98	78	29	6.3	3.2	3.2	500	28.9	883	115
37	AR RAKHIYAH	1767750	414500	1525	87	84	10	67	84	87	60	44	6.4	5.1	5.1	8	29.8	772	55
8	HAIZ ASWAD	1768000	413600	1620	88	110	9	8	110	8	81	8	8.1	1.6	1.6	35	29.4	4	8
8	HAUZ ASAWAD	1768000	413750	1620	87	8	12	82	1 8	87	8/	8	11.5	5.8	5.8	100	29.1	672	23

YEM/87/015

 $\sim \times$

2

NORADEP

.

Page 1

Data of well inventory of Attat Valley (selection)

M M	1		}		ADMINIC	1.11		Javan Burn		usdo	Tear	Depth	Depth		I Total	ex -	Water use	Teme.	L	Annual
ATTANTANTANT Treeson at store of st						5	depth	casing	<u>ب</u>	\$	hst.	ъ	\$		Chilir	en Hilligtd	Domese		Ę	abat.
Distribution Treeson 41/201 Treeson 4			1	1	191	Lation	E)	(incn)	(E)	Ē	bund	(m) dund	water (£	Sersons)			2
Into ALHUU Tresson 415000 Into ALHUU Into ALHUU <th< td=""><td>\$</td><td>ATHAYBANIYAH</td><td>1768500</td><td></td><td>1600</td><td>88</td><td>74</td><td>8</td><td>8</td><td>74</td><td>30</td><td>8</td><td>ī</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td>يستستعد</td></th<>	\$	ATHAYBANIYAH	1768500		1600	88	74	8	8	74	30	8	ī	1				1		يستستعد
B MACHAUI Trespond 415000 110 20	Ŧ	HAQ ALHAU	1768350		1615	88	8	, ac	1	t g	0 90	8 0	8 9	5.0		6.4			677	
I MO ALHUU Tresson 41500 167 7 <td>¥</td> <td>HAG ALHAU</td> <td>1768600</td> <td></td> <td>1612</td> <td>8</td> <td>7</td> <td>Ş</td> <td></td> <td>5</td> <td>0</td> <td></td> <td>₹ {</td> <td></td> <td></td> <td>10.9</td> <td></td> <td></td> <td>610</td> <td></td>	¥	HAG ALHAU	1768600		1612	8	7	Ş		5	0		₹ {			10.9			610	
Image: Mark Autor Tresson 41500 1010 82 73 74 83 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 74 75	-	HAG ALHAU	1768600		1615	8	5 8	2 ¢	f 8	8 8	\$ 8	5 1	8	5.5		5.8	<u> </u>		653	7
BMKFRMH TISESDD 413 E 5	3	HAQ ALHAU	1768800		1610	8 8	5 8	2 0	8 8	5 8	2	19	4	8.8		5.1		29.2	767	138
BAKFRAH Treeno 41800 41800 4180 50 51 51 51 51 21 <td>10</td> <td>BAKHRAH</td> <td>1765900</td> <td>s . es</td> <td></td> <td>70</td> <td>88</td> <td>0 0</td> <td>R</td> <td>29</td> <td>82</td> <td>51</td> <td>4</td> <td>6.1</td> <td></td> <td>2.6</td> <td></td> <td></td> <td>742</td> <td>87</td>	10	BAKHRAH	1765900	s . es		70	88	0 0	R	29	82	51	4	6.1		2.6			742	87
BAKFHAHI TYRESD0 41500 73	-	BAKHRAH	1766000	1000	1000	5	20	80		8	84	57	8 5		9.6	1.3			676	5
BAKFRAH TTERESD ATTO BAK BAK <t< td=""><td>1</td><td>BAKHPAH</td><td>1766200</td><td>2.01</td><td></td><td>2</td><td>i</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.9</td><td></td><td></td><td></td><td></td><td>747</td><td></td></t<>	1	BAKHPAH	1766200	2.01		2	i							5.9					747	
Buck-Harti Tresson 41300	9	BAKHDALI	1766760		0001	26	74	2			8	60	8	5.0		3.8			1429	۴
BAKHRAH Tresson 413550 413550 143550 14355			NC700, 1		D#91	8	8	80	2	84	83	78	8		26	36				01
BANTHAM TYEND 41530 122 13 122 13 122 13 123 13 123 13	2 5		1 /66500	415350	1625	84	8	œ		84			46		ac				010	
BMXFIAM TY86000 415700 650 10 10 69 100 10 69 100 10 600 27 20 <td>2 3</td> <td>HAHLAND</td> <td>1766750</td> <td>415350</td> <td>1620</td> <td>87</td> <td>12</td> <td>80</td> <td></td> <td>122</td> <td>87</td> <td>87</td> <td>8</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2 3	HAHLAND	1766750	415350	1620	87	12	80		122	87	87	8	33						
BANCHAMI T760000 4156000 415600 416600 415600 416600 415600 416600 415600 416600 415600 416600 415600 416600 415600 416 <	5	BAKHRAH	1766400	415750	1530	8	100	10	16	8	8	20	8 8	0.0					212	ដ្ឋ
S NMDAN Tristico deficio 2031 57	N	BAKHRAH	1766000	415800	1635	83	88	æ	48	44	3 8	2	8 9		2.2	2.2			543	
BAYT ASAMF TRSCM0 USCM0 USCM0 <thuscm0< th=""> <thuscm0< th=""> USCM0</thuscm0<></thuscm0<>		SAWDAN	1760700	406100	2034	58	3EO	5	2	3	3 8		3		4.5	3.2			646	
BAYT ASAMR 175960 404/50 755 8 175 6 75 9 300 425 WUDAYD 175700 40350 2035 8 200 8 200 8 200 425 WUDAYD 175700 40350 2035 8 200 8 200 8 200 8 200 425 WUDAYD 175700 40350 2030 8 200 200 200 200 <td>7</td> <td>BAYT ASAWR</td> <td>1760200</td> <td>405000</td> <td>SUBIC</td> <td>8</td> <td>207</td> <td>2 0</td> <td>~</td> <td>Care</td> <td>e 8</td> <td>213</td> <td>190</td> <td></td> <td>6.4</td> <td>3.2</td> <td></td> <td></td> <td>371</td> <td></td>	7	BAYT ASAWR	1760200	405000	SUBIC	8	207	2 0	~	Care	e 8	213	190		6.4	3.2			371	
WUDAND TYSEND 4000 TYSEND <	10	BAYT ASAWR	1759800	ADAARD	SUSE	8 8	i e	• •	202	e i	5	82	175		57.6	9.6	300		426	
WADAYD TTSSTOD Correction Correction <td>(0)</td> <td>WDAYD</td> <td>1760200</td> <td>ADAGED</td> <td>2006</td> <td>8</td> <td></td> <td>io o</td> <td>R</td> <td>DEN</td> <td>82</td> <td>183</td> <td>8</td> <td></td> <td>19.2</td> <td>6.4</td> <td>200</td> <td></td> <td>435</td> <td></td>	(0)	WDAYD	1760200	ADAGED	2006	8		io o	R	DEN	82	183	8		19.2	6.4	200		435	
MATIONH Tristion Low 200 200 201 100 200 400 MATIONH Tristion 40000 1000 200 8 200 8 200 400 MATIONH Tristion 40000 4000 51 32 90 51 32 90 51 55 53 841 50 57 40 55 45 53 841 50 57 40 55 841 50 57 841 50 57 45 45 55 841 50 57 841 50 57 53 841 50 57 53 841 50 57 53 841 50 57 53 841 50 57 53 841 50 57 53 841 50 57 57 57 57 57 57 57 53 54 53 56 51 50 770	1	WADAYD	1760700	DODOLOUT		88	91	80	33	ŝ	æ	183	155	4.9	16.0	7.7			437	
Martinality Transon Landom Landom <thlandom< th=""> Landom Landom</thlandom<>	~		COLOCIT	00100		2		80	220	250	8	204	180		32.0	96	200		AED.	
MATCHAH Trentud Hontand Hontand <t< td=""><td>. 0</td><td></td><td>meia/i</td><td>turnon t</td><td>2020</td><td>8</td><td>22</td><td>80</td><td>190</td><td>83</td><td>8</td><td></td><td>170</td><td></td><td>32.0</td><td>64</td><td>5</td><td></td><td></td><td></td></t<>	. 0		meia/i	turnon t	2020	8	22	80	190	83	8		170		32.0	64	5			
MACHANI Tresult Tresult <t< td=""><td></td><td></td><td>0010/1</td><td>the second</td><td>nenz</td><td>88</td><td>292</td><td>œ</td><td></td><td></td><td>88</td><td>195</td><td>190</td><td></td><td>51</td><td>20</td><td>8</td><td></td><td></td><td></td></t<>			0010/1	the second	nenz	88	292	œ			88	1 95	190		51	20	8			
BAXCHMAH 1786400 415150 1530 87 10 50 50 54 84 55 84 BAXCHMAH 1785800 415610 1570 157 10 64 85 87 50 57 55 84 BAXCHMAH 1785800 415601 1570 1570 1570 1570 1570 1570 1570 1570 1570 1570 1570 120 27 57 25 57 120			1 /66480	415150	1630	87	5	10	8	75	87	23	9		A R		8 8		800	
BACHEAH 1755600 415860 415860 61580 81 90 50 53 841 BATTEBNAED(SADA 1756500 1670 82 120 12 108 120 6 1 300 250 824 841 BATTEBNAED(SADA 1756500 16700 82 120 12 108 120 12 108 12 255 25 <td></td> <td>BANHHAH</td> <td>1766400</td> <td>415150</td> <td>1630</td> <td>87</td> <td>85</td> <td>10</td> <td>8</td> <td>58</td> <td>87</td> <td>5</td> <td>2</td> <td></td> <td></td> <td>D •</td> <td>8 8</td> <td>E.12</td> <td>180</td> <td></td>		BANHHAH	1766400	415150	1630	87	85	10	8	58	87	5	2			D •	8 8	E.12	180	
BAT EBN AED(SADA 1765450 1755450 1165500 127 108 120 <th< td=""><td></td><td></td><td>1765800</td><td>415850</td><td>1660</td><td>8</td><td>8</td><td>80</td><td>81</td><td>6</td><td></td><td>3</td><td>8 5</td><td></td><td>4. 0</td><td>4.0</td><td>\$</td><td>5.82</td><td>841</td><td></td></th<>			1765800	415850	1660	8	8	80	81	6		3	8 5		4. 0	4.0	\$	5.82	841	
BAT SHERAN 1785300 417900 1960 66 18 10 106 118 66 43 73 700 713 700 713 700 713 700 713 700 713 700 700 715 50 70 64 65 50 70 64 65 67 63 64 64 70			1765450	416500	1670	82	120	12	108	12	8	8	8 8				8	25.0	824	
BAT ABO MArYAM TR62200 418200 1550 81 50 73 57 53 32.0 51 150 27.2 57 BAXHPAH 1765200 418700 1550 81 90 10 72 90 81 57 53 32.0 51 150 27.2 579 HAQALHAU 1767250 415700 1530 85 90 12 75 50 7.0 64 64 64 610 87 66 610 87 70 17 48 88 17 70 88 17 70 88 85 70 71 48 88 71 88 86 71 70 88 86 57 88 86 71 70 88 86 71 88 88 88 88 88 88 88 88 88 88 88 71 88 71 88 71 71			1766300	417900	1680	98	118	10	108	118	3	8	8 8		9.4	1.3	300	27.0	1290	
BAKHRAH 1765500 415000 1550 81 90 10 72 90 91 75 50 71 5 50 70 64 65 50 71 64 60 71 65 50 70 64 60 70 620 610 617 620 610 <th6< td=""><td></td><td>MARYAM</td><td>1766200</td><td>416200</td><td>1650</td><td>18</td><td>99</td><td>æ</td><td>2</td><td>2</td><td>2</td><td></td><td>8 8</td><td>6.4</td><td>32.0</td><td>5.1</td><td>150</td><td>27.2</td><td>579</td><td>8</td></th6<>		MARYAM	1766200	416200	1650	18	99	æ	2	2	2		8 8	6.4	32.0	5.1	150	27.2	579	8
HAQALHAU 1767250 415700 1830 85 90 12 90 70 90 70 82 70 82 70 82 82 82 82 82 82 82 80 80 <td></td> <td>Ν.</td> <td>766500</td> <td>416000</td> <td>1650</td> <td>81</td> <td>8</td> <td>ŧ</td> <td>4</td> <td>8 8</td> <td>1 2</td> <td>ō i</td> <td>8 8</td> <td></td> <td>11.5</td> <td>9.5</td> <td>20</td> <td></td> <td></td> <td></td>		Ν.	766500	416000	1650	81	8	ŧ	4	8 8	1 2	ō i	8 8		11.5	9.5	20			
ALHARAGH 1768400 415700 1610 87 70 10 52 70 87 55 35 94 128 100 25.0 610 ALHARAGH 1768900 415900 1600 160 87 70 10 52 70 87 55 35 94 128 100 25.0 686 ALHARAGH 1769100 415600 160 85 84 76 87 55 35 94 128 100 25.0 586 ALHARAGH 1769150 416000 1605 88 74 10 74 85 57 45 94 64 64 64 27.0 59 ALHARAGH 1769100 416000 1605 88 74 10 74 85 57 45 94 64 64 64 27.0 59 ALLHARAGH 1770800 4170800 4500 557 45 94 </td <td></td> <td></td> <td></td> <td>415700</td> <td>1630</td> <td>88</td> <td>8</td> <td>¢</td> <td>ų</td> <td>R</td> <td>00</td> <td>6</td> <td>88</td> <td>1.0</td> <td>6.4</td> <td>6.4</td> <td>\$</td> <td>27.0</td> <td>620</td> <td>100</td>				415700	1630	88	8	¢	ų	R	00	6	88	1.0	6.4	6.4	\$	27.0	620	100
ALHARAGH 1768900 415800 1500				415700	1610	87	2	: -	53	۶	0.0	H	88		3.8	3.8	80	25.0	610	
ALHARAGAH 1769100 4154100 1610 85 81 75 83 9.6 9.6 4.00 22.0 598 ALHARAGAH 1769100 415600 1605 84 76 87 61 80 12.8 12.8 100 27.0 530 ALHARAGAH 1769100 416000 1605 86 74 10 74 85 57 45 9.4 64 6.4 27.0 630 ALHARAGAH 1769100 416500 1600 87 84 10 74 85 57 45 9.4 64 6.4 27.0 630 ALLARAGAH 1770800 416000 1505 86 74 10 75 85 51 45 9.4 64 64 64 67 76 ALLARAGAH 1772260 42000 1522 10 75 85 51 45 9.6 9.6 9.6 76 76			768909	415900	1605	4	8	. α	2	2 6	5 F	8 9	68	4.5	12.8	12.8	8	25.0	686	6
ALHARAGH 1769150 416000 1605 84 75 8 46 76 87 80 12.8 12.8 12.8 17.0 630 ALHARAGH 1769100 416000 605 86 74 10 74 85 57 45 94 64 64 64 84 27.0 530 ALHARAGH 1769100 416500 605 86 74 10 74 85 57 45 94 64 64 84 27.0 530 ALLARAGAH 1770800 416500 85 75 10 75 85 51 45 94 80 12.8 200 27.8 807 ALGAFGAF 1770800 426500 557 45 51 45 55 45 96 76 807 200 27.8 807 SINWAN 1772550 420500 1550 480 75 85 51 45 <td></td> <td></td> <td>769100</td> <td>415400</td> <td>1610</td> <td>8</td> <td>88</td> <td>ţ</td> <td></td> <td>2 8</td> <td>: 8</td> <td>Ş [</td> <td>8</td> <td>0</td> <td>9.6</td> <td>9.6</td> <td>400</td> <td>22.0</td> <td>598</td> <td></td>			769100	415400	1610	8	88	ţ		2 8	: 8	Ş [8	0	9.6	9.6	4 00	22.0	598	
ALHARAGAH 1759100 416000 600 60 19.2 12.8 100 ALHARAGAH 1769100 416000 600 87 74 10 74 85 57 45 94 64 64 22.0 776 ALHARAGAH 1769400 416500 600 87 90 87 84 80 12.2 19.2 12.8 200 27.8 607 ALGAFGAF 1770800 420500 553 85 75 10 75 85 51 45 9.6 300 29.0 617 807 SINWAN 1772250 420500 1522 10 75 85 51 45 9.6 300 29.0 617 807 SINWAN 1772250 420500 1480 72 85 51 45 9.6 9.6 76 807 29.2 688 SINWAN 1771600 4180 72.0 86 72<				416000	1605	8	۶ ¥	2α	10	8 8	8 8	2 2	1	8.0	12.8	12.8		27.0	630	114
ALHARAGAH 1769400 416500 1500 87 90 87 85 51 45 9.4 6.4 6.4 22.0 776 ALGAFGAF 1770800 420000 1533 85 75 10 75 85 51 45 9.4 6.4 6.4 22.0 776 ALGAFGAF 1770800 420000 1533 85 75 10 75 85 51 45 9.6 9.6 9.0 617 SINWAN 1772250 420500 1522 10 75 85 51 45 9.6 9.6 300 29.0 617 SINWAN 1772250 420500 1522 18 200 27.8 500 718 50 21.2 8.1 22.0 716 SINWAN 1771800 4180 22.0 75 85 51 45 9.6 9.6 300 29.2 698 ALGIDIRAH 17718000				416000	1605	*	2	¢	ł	27	20	5	8		19.2	12.8	5			
ALGAFGAF 1770800 420000 535 85 75 10 75 85 51 45 9.6 0.617 SINWAN 177250 472000 423700 480 72 85 51 45 9.6 9.6 300 29.0 617 SINWAN 1771800 41800 4300 54.0 85 72 8 80 72 85 50 14.4 6.4 6.4 300 29.0 518 ALGIDIRAH 1771800 41800 550 72 85 50<		Г I		416500	1600	87	5	2 a		ŧ 8		20	2	9.4	6.4	6.4		22.0	776	140
SINWAN 1772250 420500 1522 9.6 7.2 88 80 72 85 83 50 14.4 6.4 800 28.0 518 ALGIDIRAH 1771800 4187500 15.00 85 72 85 63 50 14.4 6.4 6.4 300 28.0 518		-		420000	1535	ž	×	, ;		8 H	2	t	8	12.2	19.2	12.8	200	27.8	607	8
SIWAN 1773100 423700 1480 29.2 688 ALGIDIRAH 1771600 418300 15.40 85 72 85 63 50 14.4 6.4 54.00 518 ALGIDIRAH 1771800 418700 15.40 85 72 8 60 72 85 63 50 14.4 6.4 6.4 300 518				420500	1522	3	?	2		e	2 2	19	45		9.6	9.6	300	29.0	617	345
ALGIDIRAH 1771600 418300 1540 85 72 8 60 72 85 63 50 14.4 6.4 6.4 300 29.0 518 ALGIDIRAH 1771800 418750 1550 07 00 00 00 00 72 85 83 50 14.4 6.4 6.4 300 29.0 518	dil.			423700	480						ACC.							29.2	688	
ALGIDIRAH 1771800 418750 1550 07 00 00 00 07 00 12 00 03 00 14.4 6.4 6.4 300 29.0 518				222	1540	\$8	2	æ	8	4	8	S	2		į					
				CTOOL P	-		!	>	3	2	00	20	7	AA	P S					

.

Page 2

y (selection)
Valle
Atal
6
Inventory
2
ž
Data o

(parenet) (UTT) mask of desch censk (mol) (mol) <th< th=""><th>(non-ref) (UT1) mase of dente (m) <</th><th>\$</th><th>Vilage</th><th>ů</th><th>Coordinates Altitude</th><th>Altitude</th><th>Year</th><th>Well</th><th>Well Dimmeter</th><th>Screen/open</th><th></th><th>Ver</th><th>Dank</th><th>1-1-1</th><th>N.M.</th><th></th><th></th><th>E</th><th></th><th>- 6-</th><th></th></th<>	(non-ref) (UT1) mase of dente (m) <	\$	Vilage	ů	Coordinates Altitude	Altitude	Year	Well	Well Dimmeter	Screen/open		Ver	Dank	1-1-1	N.M.			E		- 6-	
N T Trans Trans <thtra< th=""> <thtra< th=""> <thtra< th=""></thtra<></thtra<></thtra<>	N L manual	2		•	-	1 12 4 1.4				~	200	104	undan	neptu		120	Water		Temp.	U Li	Annual
N E Intel Identer (intel) (int	N E Trandom Home Forme Journel Trandom Home Journel					200 E	5	depth	Buses	Hon Ho	\$	Ľ,	Ъ	\$	yteld	farm size	ITTIRE D			ş	abert
ALDAHAMINH TTT1800 418800 1545 87 75 ALDAHAMINH TTT1800 418800 1545 87 75 8 85 40 10.4 54 64 ALDAHAMINH TTT1800 418000 1545 87 75 8 75 40 10.4 54 95 51 40 85 51 40 86 51 40 86 51 40 86 51 40 86 51 50 128 86 51 40 86 51 40 86 51 40 86 51 40 86 51 40 86 51 51 50 51 <th>MLJAHAMINH TTT300 41880 545 87 75 87</th> <th></th> <th></th> <th></th> <th></th> <th>E</th> <th>constr.</th> <th>E</th> <th>(inch)</th> <th>æ</th> <th>1.11</th> <th>dund</th> <th>(m) annq</th> <th></th> <th></th> <th>£</th> <th>) (m)</th> <th>(suor</th> <th>00</th> <th>(• C) 23 • C</th> <th>(Em 0001*)</th>	MLJAHAMINH TTT300 41880 545 87 75 87					E	constr.	E	(inch)	æ	1.11	dund	(m) annq			£) (m)	(suor	00	(• C) 23 • C	(Em 0001*)
ALDAHAMINH TTISSO 41900 552 89 79 85 79 70 70 64 64 QAHER TTTISSO 41900 153 89 75 8 75 8 75 9 64 64 ALHAZM TTTISSO 41900 153 8 75 8 75 9 64 64 9 64	ALIDAHAMINHI TTTESO 41800 153 95 7 95 73 40 10.4 6.4 <t< td=""><td>2</td><td>ALDAHAMIYAH</td><td>1771300</td><td></td><td></td><td>67</td><td>۲</td><td></td><td></td><td></td><td>1</td><td>8</td><td>100</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>	2	ALDAHAMIYAH	1771300			67	۲				1	8	100				1			
Querts T/T1000 41500 T/T1000 41500 4150 416 410 82 73 83 73 84 40 82 96 61 ALH-AXN T/T1000 415000 1501 151 85 51 40 53 96 51 96 51 BATT ANGNETIAN T/T7000 415000 1500 150 86 51 40 53 55 51 20 51	Quert Tription Tription <t< td=""><td>8</td><td>AI DAHAMINAH</td><td>1771550</td><td></td><td></td><td>5 8</td><td>2 8</td><td></td><td></td><td></td><td>8</td><td>8</td><td>Ş</td><td>10.4</td><td>6.4</td><td>6.4</td><td>150</td><td>29.0</td><td>652</td><td>230</td></t<>	8	AI DAHAMINAH	1771550			5 8	2 8				8	8	Ş	10.4	6.4	6.4	150	29.0	652	230
CERVA. 1771000 419800 1532 88 56 8 6 49 40 90 96 64 ALHAZM 1771000 419800 1530 159 10 70 55 1 40 50 36 51 40 50 36 51 40 50 36 51 40 50 36 51 40 50 36 51 50 36 51 50 51 50 51 51 50 51 50 51 50 51 50 51 50 51	CHEVALATION TTTTOON 41300 153 88 55 40 93 64 200 BUT ANSHETAN TTTTOON 413000 1530 84 70 93 51 40 93 64 70 BUT ANSHETAN TTTTOON 413000 1530 88 90 8 51 40 53 51 40 53 51 50 51 50 51 50 53 50 51 50 53 51 50 55 51 50 53 50 51 50 53 51 50 51 50 51 50 55 51 50 55 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>18</td> <td>æ</td> <td>R</td> <td>6</td> <td>8</td> <td>8/</td> <td>4</td> <td>8.2</td> <td>9.6</td> <td>5.1</td> <td>130</td> <td>27.6</td> <td>710</td> <td>195</td>	5					8	18	æ	R	6	8	8/	4	8.2	9.6	5.1	130	27.6	710	195
MUMACLE 1771000 479400 551 8 75 8 75 8 75 8 75 8 70 102 70 122 6 71 BAT ANSHERAN 1778000 420000 15000 400 100 10 7 10 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 5 1 40 55 5 1 40 55 1 40 55 5 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 40 55 1 5 1 55 5 <t< td=""><td>MLMAXM TTT000 THMO0 <</td><td>5 1</td><td></td><td>I / / I RUG</td><td></td><td></td><td>88</td><td>82</td><td>œ</td><td></td><td>8</td><td>68</td><td>48</td><td>4</td><td></td><td>96</td><td>6.4</td><td>2</td><td>270</td><td>CV3</td><td></td></t<>	MLMAXM TTT000 THMO0 <	5 1		I / / I RUG			88	82	œ		8	68	48	4		96	6.4	2	270	CV3	
MAXAM 1771300 42500 150 84 70 10 70 85 51 40 50 51 40 55 51 40 51	MUTAXIM TTT1900 42500 150 10 70 55 10 70 55 51 50	8	GEHW ALGETAF	1771000	13		88	22	8			88	89	4U		12.8		3 8			ļ
BAT ANSHETAN TR9500 41200 570 50 <td>BAT ANSHERAN T78800 47300 4700</td> <td>8</td> <td>ALHAZM</td> <td>1771300</td> <td></td> <td>1</td> <td>18</td> <td>R</td> <td>10</td> <td></td> <td>۶</td> <td>8</td> <td>1</td> <td>2</td> <td></td> <td>0.21</td> <td>4.0</td> <td>ß</td> <td>R</td> <td>204</td> <td>111</td>	BAT ANSHERAN T78800 47300 4700	8	ALHAZM	1771300		1	18	R	10		۶	8	1	2		0.21	4.0	ß	R	204	111
BMT SHERAN 1789500 420250 1500 80 60 8 90 80 91 70 72 SNWANN 1772600 42000 1400 85 7 12 91 70 25 51 25 51 25 51 25 25 51 25	BAT SHETAN T78600 4200 180 8 0 4 5	2	BAT AMSHERAN	1789500		1		8	2		2	3 3	5 1	₹ 8	2.0				30.3	618	
SINWAN 177300 42400 140 35 51 SINWAN 177300 42400 1470 55 51 55 51 SINWAN 177300 42400 1470 55 51 25 51 25 SINWAN 177300 42500 1460 55 5 55 25 30 30 33 30 SINWAN 177300 42500 1460 55 25 30 30 33 30 </td <td>SYMAN 1773600 42400 1470 256 51 50 SINWAN 1773600 42400 1470 85 35 55 51 56 51 56 51 56 51 50 50 SINWAN 1773600 42400 1470 85 35 85 33 35 33 35 53 55 53 50 10 90 90 91 70 90 90 91 70 90 90 91 70 90 91 70 90 91 70 90 91 70 90 91 70 90 91 70 91 70 91 70 90 91 70 90 91 70 91 70 91 70 90 91 70 91 70 91 70 91 70 91 70 91 70 91 70 91 70 91<</td> <td>*</td> <td>BATT SHERAN</td> <td>1769500</td> <td></td> <td>6</td> <td>8</td> <td>8</td> <td>c</td> <td>ş</td> <td>2</td> <td>\$ 3</td> <td>0</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>29.62</td> <td>749</td> <td></td>	SYMAN 1773600 42400 1470 256 51 50 SINWAN 1773600 42400 1470 85 35 55 51 56 51 56 51 56 51 50 50 SINWAN 1773600 42400 1470 85 35 85 33 35 33 35 53 55 53 50 10 90 90 91 70 90 90 91 70 90 90 91 70 90 91 70 90 91 70 90 91 70 90 91 70 90 91 70 91 70 91 70 90 91 70 90 91 70 91 70 91 70 90 91 70 91 70 91 70 91 70 91 70 91 70 91 70 91 70 91<	*	BATT SHERAN	1769500		6	8	8	c	ş	2	\$ 3	0	8					29.62	749	
SINWAN TTZZOD 42400 Trop 83 70 72	SINWAN 1772500 42400 1470 85 70 12 84 63 40 55.0 10	8	SINWAN	1779600	8.8		8 2	R 8	»	6	6	88	60	\$		25.6	5.1	8	30.0	872	
SINWAN 1772500 42500 1400 55	SINWANN 1773300 45500 1400 65 75 65 75	5	SIMMAN	CODOL 1		1.10		51	21			84	8	đ	25.0			800	26.5	1090	688
SINWANN 1772500 425000 1480 85 7 85 7 85 7 85 7 85 7 85 7 85 7 85 7	NIMMAN 177250 45500 1460 65 25 25 FINAMAN 177250 425100 1480 65 73 23 33	5 8		nose i i			8	£				88	33	ß					207	451	
SINWAN 1772760 423700 1480 85 78 85 71 85 85 71 85 85 71 85 85 71 85 85 71 85 85 71 85 73 85 71 85 73 85 71 85 73 85 71 85 73 85 71 85 73 85 71 85 73 85 71 85 73 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 85 71 72 85 71 72 85 71 73 85 71 73 85 71 73 85 71 73 85 73	SINWAN 177250 423700 1480 85 73 85 73 85 73 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 75 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 85 74 86 74 87 86 74 87 86 74 87 86 74 87 86 74 87 75 84 87 76 86 71 87 76 86 71 87 76 84	8 8		1//33000		QI 0	88					58		80					0 00		
SINWAN 1772500 423500 1485 85 71 85 71 85 71 85 85 71 85 85 71 80 83 318 81	SINWAN 1772600 4355 65 73 85 71 85 71 85 71 85 71 85 71 85 71 85 71 73 85 71 73 81 73 81 71 73	8	SINWAN	1772750	423700	30	8					*		×					0.02		
HAZMALLEFLAF 1771260 427000 1550 70 55 71 50 71 51 73 38 38 94 95 1 95 1 95 95 1 95 95 1 95 95 1 94 95 1 94	HAZM ALJEFLAF 1771250 42010 1530 85 78 85 71 22 128 9.4 100 WADI SINWANN 1771000 4731000 4530 65 10 73 65 51 72 128 9.4 100 WADI SINWANN 1771000 4731000 4530 65 10 73 65 85 71 60 137 38 38 100 WADI SINWANN 1776000 4550 85 70 82 105 73 51 270 19 100 10 50 75 50 61	8	SINWAN	1772600		12	85					3		3 8					31.0	540	
WADI SINWAN 1771000 27400 1500 150 10 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20<	WADI SINWAN 1771000 42400 1500 100 100 121 128 9.4 100 WADI SINWAN 1771000 421400 1500 105 10 23 128 9.4 100 WADI SINWAN 17789400 47000 1500 105 10 23 105 17 38 38 100 WADI SINWAN 1759400 45000 1500 150 10 58 70 82 105 10 37 32 320 190 WADI SINWAN 1759400 45000 1500 150 10 58 70 82 105 81 70 82 100 81 100 81 100 81 81 100 81 81 100 81 81 100 81 81 100 81 81 100 81 81 81 81 81 81 81 81 81 81 81 81<	16	HAZM ALUEFJAF	1771250	420100	0.10	¥	۴	0		۶	ł	1	8 1					24.2	424	
WaDI SINWAN Tression 4200 100	WADI SINWAN TERBOD 4775 60 13.7 3.8 3.9 100 WADI SINWAN TF6900 47500 150 10 73 85 71 60 13.7 3.8 3.9 3.9 3.0 19 WADI SINWAN TF69400 419400 1570 79 105 10 57 75 6 14 6.4	28	WADI SINWAN	1771000	421400		3 8		D ;	1	2	£	19	8		12.8	9.4	8	26.3	400	
Wall SINWAN Treewood Freewood	WADISINWAN Treason 4500 1500 150 17 100	8	WADI SINNAN				8 2	5	2 :	2	£	8	7	8	13.7	3.8	3.8	10	30.05	919	38
WMD SI SINWAN Treadult F3 73 73 73 73 73 73 73 75 75 75 75 75 75 51 <td>WADI SINWAN TOSADU 1750 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 35 105 35 105 35 105 35 105 35 105 35 105 35 105 35 40 12.2 12.2 102 35 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300</td> <td>3</td> <td></td> <td>000001</td> <td>000074</td> <td>0.042</td> <td>18</td> <td>ŝ</td> <td>0</td> <td>8</td> <td>105</td> <td>87</td> <td>34</td> <td>8</td> <td>8.4</td> <td>3.2</td> <td>32.0</td> <td>19</td> <td>30.05</td> <td>1043</td> <td>110</td>	WADI SINWAN TOSADU 1750 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 35 105 35 105 35 105 35 105 35 105 35 105 35 105 35 40 12.2 12.2 102 35 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300 132 300	3		000001	000074	0.042	18	ŝ	0	8	105	87	34	8	8.4	3.2	32.0	19	30.05	1043	110
WMUL SIMMAN 1769400 42000 1560 82 70 82 70 82 40 36 64 </td <td>Wmultishtwart Tristation Section Tites Tite Section Tite Section <</td> <td>5 2</td> <td></td> <td>noteq/1</td> <td>419400</td> <td>1570</td> <td>2</td> <td>105</td> <td>œ</td> <td>8</td> <td>8</td> <td>ጽ</td> <td>51</td> <td>\$</td> <td>4.9</td> <td>5.1</td> <td>51</td> <td>Ex.</td> <td>28.0</td> <td>AAD</td> <td>8</td>	Wmultishtwart Tristation Section Tites Tite Section Tite Section <	5 2		noteq/1	419400	1570	2	105	œ	8	8	ጽ	51	\$	4.9	5.1	51	Ex.	28.0	AAD	8
Dewni SHERAN 1765200 419000 159 75 75 75 76 160 160 BANI SHERAN(ALKH, 1765750 419750 1570 88 105 8 187 105 88 68 40 15.2 BANI SHERAN(ALKH, 1765750 4197500 1570 88 105 8 187 105 88 68 40 15.2 14.1 10.2 ALHESN 1771600 426500 1530 87 188 15.2 180 84 42 40 15.8 32.0 19.2 ALHESN 1771650 419400 1530 87 74 81 42 40 15.8 32.0 19.2 ALMERR 1771650 419400 1530 87 74 81 45 40 15.0 32.0 12.8 19.2 ALMER 1771650 419400 176100 250 25 74 81 45 40 15.0 32.0 <td>Immunisterun 1763700 419000 1560 160</td> <td>8 4</td> <td>WAUI SINWAN</td> <td>1769400</td> <td>420000</td> <td>1560</td> <td>8</td> <td>۶</td> <td>10</td> <td>58</td> <td>2</td> <td>8</td> <td>40</td> <td>38</td> <td></td> <td>64</td> <td>R.A.</td> <td>2</td> <td>2.24</td> <td>ł</td> <td>B</td>	Immunisterun 1763700 419000 1560 160	8 4	WAUI SINWAN	1769400	420000	1560	8	۶	10	58	2	8	40	38		64	R.A.	2	2.24	ł	B
Bundi SHERAN(ALKH 1769750 419250 1570 83 105 8 187 105 83 40 12.8 12.8 ALHESN 1771800 478700 1582 86 105 8 187 105 86 66 40 8.5 32.0 19.2 ALHESN 1771800 478700 1582 86 105 8 187 105 86 66 40 8.5 32.0 19.2 ALHESN 1771800 419750 1530 87 18 65 74 81 45 40 14.1 10.2 ALHESN 1771800 419750 1528 81 74 8 55 74 81 45 40 12.8 19.2 ALMASIR 1760300 399700 2100 82 232 105 85 27 40 12.8 19.2 ALWOI 1760300 39970 2100 82 254 290	BMM SHERAN(ALKH, 1769750 119250 1570 88 105 8 187 105 86 40 12.8 10.2	8 1	BANI SHEHAN	1769200	419000	1580			5	20	75		52	8		16.0	10.01		0.00		
BANI SHERAN(ALKH, 1789650 4187700 1582 66 162 187 105 66 40 65 40 65 41 11 102 ALHESN 1771600 426500 1530 87 180 8 162 170 84 42 40 154 102 ALHESN 1771600 426500 1530 87 74 81 45 40 154 102 ALHESN 1771650 419750 1528 81 74 8 55 74 81 45 40 156 102 ALMASIR 1760300 406600 2010 79 226 90 128 192 ALMASIR 1760700 399700 2100 79 226 90 128 192 ALMADI 1760700 399700 2100 79 226 10 135 ALWADI 1760700 399900 2100 73 270 220	BANI SHERAN(ALKH, 1789650 418770 155 8 165 187 165 86 65 40 65 20 12.7 ALHESN 1771600 420500 1530 87 180 8 162 180 84 42 40 14.1 10.2 300 ALHESN 1771600 420500 1528 81 74 81 45 40 14.1 10.2 300 ALHESN 1771650 419750 1528 81 74 81 45 40 14.1 10.2 300 ALMADI 1760500 39900 2100 82 300 10 25 15 30 300 ALMADI 1760500 39900 2100 79 280 82 74 81 45 40 16.0 13 30 ALMADI 1760500 39900 210 25 82 13 32 32 32 32 32	R	BANI SHERAN(ALKH	1769750	419250	1570	8	105	8	187	105	8	8	9		100			0.02		
ALHESN 1771800 420500 1530 87 180 8 162 180 8 17 102 32.0 19.2 ALHESN 1771850 419400 1530 85 78 8 6 47 40 14.1 10.2 ALHASAR 1771850 419750 1530 85 78 8 6 47 40 25.6 96 ALASAR 1770500 49600 1528 81 74 8 55 74 81 45 40 16.0 12.8 ALASAR 1760500 39800 2100 79 280 8 25.4 20 85 74 81 45 40 16.0 12.8 95 10 95 95 10 95 95 10 95 10 95 10 95 12.8 192 102 12.8 192 14.1 10.2 16.0 12.8 192 16	ALHESN 1771800 420600 1530 87 180 84 2 0 0.0 0.20 <th0< th=""> 0.20<td>8</td><td>BANI SHERAN(ALKH</td><td>1769650</td><td>418700</td><td>1582</td><td>98</td><td>105</td><td>8</td><td>187</td><td>Ę</td><td>æ</td><td>8</td><td>ŝ</td><td>10</td><td></td><td>0.2</td><td>-</td><td>21.0</td><td>1960</td><td></td></th0<>	8	BANI SHERAN(ALKH	1769650	418700	1582	98	105	8	187	Ę	æ	8	ŝ	10		0.2	-	21.0	1960	
ALPACEH-ALSOBAY/ 1771300 419400 1530 85 78 8 6 7 40 71/1 ALPACEH 1771650 419750 1528 81 74 8 6 7 40 25.6 96 ALASAR 1771650 419750 1528 81 74 8 5 74 81 45 40 16.0 12.8 ALASAR 17760500 406500 2016 82 330 10 25 74 81 45 40 16.0 12.8 ALWADI 1760500 399600 2100 79 280 8 25 10 83 32.0 12.8 19.2 ALWADI 1760300 39900 2100 79 280 8 25.6 96 32.0 96 ALWADI 1760300 39900 210 79 280 83 25.6 96 96 96 96 96 96 <	ALPACEHALSOBAY 1771300 419400 1530 85 78 85 77 80 77 90 14.1 102 300 ALPACEHALSOBAY 1771650 419750 1528 81 74 81 45 40 74.1 102 300 ALMASAR 1760500 406600 2015 82 320 85 74 81 45 40 75.6 96 1528 300 ALASAR 1760500 406600 2100 79 280 8 254 290 156 90 12.8 300 ALWADI 1760300 399700 2100 79 280 8 255 10 155 96 90 ALWADI 1760700 40100 270 280 82 255 10 155 95 10 155 ALWADI 1760700 40100 270 280 82 255 10 155 144.8 <td< td=""><td>8</td><td>ALHESN</td><td>1771800</td><td>420500</td><td>1530</td><td>87</td><td>180</td><td>æ</td><td>5</td><td>8</td><td>20</td><td>3</td><td>2</td><td>0.0</td><td>35.0</td><td>19.6</td><td>R</td><td>0.82</td><td>350</td><td>8</td></td<>	8	ALHESN	1771800	420500	1530	87	180	æ	5	8	20	3	2	0.0	35.0	19.6	R	0.82	350	8
QAHER 1771650 419750 1528 81 74 8 55 74 81 45 40 156 97 1760300 898000 2100 79 280 10 25 20 82 230 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 12 80 13	QAHER 1771650 419750 1528 81 74 8 56 74 81 45 40 256 96 150 AL AASAR 1770500 40600 2015 82 330 8 254 290 82 128 90 128 90 AL AASAR 1760900 40600 2015 82 300 10 8 254 290 82 128 90 128 90 AL WADI 1760300 399700 2100 79 280 8 254 290 82 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 90 128 128	8	ALPAUEHALSOBAY	1771300	419400	1530	8	Ŗ	, α	3	2	5 8	7 5	3		1.41	10.2	8	29.0	440	
AL AASAR 176000 406600 2015 82 330 8 254 290 82 128 192 AL MASAR 1760000 406600 215 82 330 10 128 192 AL WADI(ALBATAH) 1760500 399600 2100 83 300 10 135 32.0 96 12.8 192 ALWADI 1760300 399700 2100 79 280 8 254 290 82 156 90 12.8 192 ALWADI 1760700 399900 2100 79 280 8 255 10 83 226 10 73 270 250 96 13 ALWADI 1760700 401600 2070 72 315 10 73 270 270 250 96 13 ALWADI 1760500 401600 2070 72 315 10 73 270 270 250	AL AASAR 1760900 406600 2015 82 300 10 12.8 300 12.8 300 12.8 300 12.8 300 12.8 300 12.8 300 12.8 300 12.8 300 12.8 300 12.8 300 12.8 132 12.8 132 12.8 132 12.8 132 12.8 132 12.8 132 12.8 132 12.8 132 12.8 132 12.8 132 135 100 12.8 100 12.8 100 100 12.8 100 12.8 100 12.8 100 12.8 100 12.8 100	P	OAHER	1771650	419750	1528	5	AL AL	• •	8 8	2	8 8	4	₽ :		28.6	9.6	150	29.3	378	
ALWADI(ALBATAH) 1760500 339600 2100 83 300 10 12.8 19.2 ALWADI 1760500 3395700 2100 79 280 10 135 132 19.2 ALWADI 1760700 399700 2100 79 280 8 32.0 96 32.0 96 ALWADI 1760700 399900 2100 79 280 8 32.0 96 ALWADI 1760700 399900 2100 79 280 83 255 10 73 32.0 96 ALWADI 1760700 401600 2070 72 315 10 79 270 220 44.8 3.2 ALWADI 1760500 401600 2070 72 315 10 79 270 220 24.8 3.2 ALWADI 1760500 401600 2070 72 315 10 79 270 220 24.8 3.2 ALWADI 1760500 401600 2070 215 8 265 <td>ALWADI(ALBATAH) 1760500 399600 2100 83 300 10 12.8 19.2 ALWADI 1760300 399700 2100 79 280 8 300 10 12.8 19.2 ALWADI 1760300 399700 2100 79 280 8 320 96 32.0 32.0 32.0 32.0 32.0 32.0 32.0 96 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32</td> <td>8</td> <td>AL AASAR</td> <td>1760900</td> <td>406600</td> <td>2015</td> <td>\$</td> <td></td> <td>α</td> <td>Ser 1</td> <td>t g</td> <td>5 S</td> <td>ę ;</td> <td>₽ 8</td> <td></td> <td>16.0</td> <td>12.8</td> <td>80</td> <td>26.0</td> <td>450</td> <td>198</td>	ALWADI(ALBATAH) 1760500 399600 2100 83 300 10 12.8 19.2 ALWADI 1760300 399700 2100 79 280 8 300 10 12.8 19.2 ALWADI 1760300 399700 2100 79 280 8 320 96 32.0 32.0 32.0 32.0 32.0 32.0 32.0 96 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32	8	AL AASAR	1760900	406600	2015	\$		α	Ser 1	t g	5 S	ę ;	₽ 8		16.0	12.8	80	26.0	450	198
ALWADI 1760300 399700 2100 79 280 8 135 32.0 9.6 ALWADI 1760700 399800 2100 79 280 8 135 32.0 9.6 ALWADI 1760700 399800 2100 79 280 8 325 10 32	ALWADI 1760300 399700 2100 79 280 8 320 96 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3	8	ALWADI(ALBATAH)	1760600	399800	2100	8	300	¢	ł	2		8	3		12.8	19.2				
ALWADI 1760700 399900 2100 130 QWADER(ALWADI) 1760700 399900 2100 235 10 83 225 QWADER(ALWADI) 1760700 400500 2080 83 325 10 83 226 ALWADI 1760800 401100 2070 73 315 10 79 270 220 ALWADI 1760800 401800 2070 73 255 8 132 150 89 270 250 ALWALL 1760800 401800 2070 81 370 2170 81 370 214 100 75 25.6 1.9 ALMARMALL 1756400 401300 2170 81 370 241 100 75 25.6 1.9 ALMARMALL 1756400 401300 2170 81 370 224 291 1.9 ALMARHUR 1756400 401300 2170 82 280	ALWADI 1760700 599600 2100 130 ALWADI 1760700 399600 2100 225 44.8 32 ALWADI 1760700 400500 2090 83 325 10 83 225 ALWADI 1760700 401600 2070 72 315 10 79 270 220 ALWADI 1760800 401600 2070 72 315 10 79 270 220 ALWADI 1760800 401600 2070 72 315 10 79 270 220 ALMARMAL 1760800 401600 2050 89 225 8 132 150 ALMARMAL 1765600 401600 270 270 220 241 100 75 25.6 1.9 ATHAR 1755200 401300 2170 81 370 201 200 75 25.6 1.9 ATHAR 1755500 <	3	ALWADI	1760300	002668	2100	62	280	2α			P				32.0	9.6				
GWADER(ALWAD) 1760700 400500 2090 83 225 10 83 225 ALWADI 1760800 401100 2070 72 315 10 73 270 220 44.8 3.2 ALWADI 1760800 401100 2070 72 315 10 73 270 220 44.8 3.2 SHUK HUMIDAN 1760800 401600 2070 75 251 8 3.2 50 207 150 74 3.2 ALWAAUL 1760800 401800 2070 81 370 81 370 91 324 291 1.9 ALMAAMAL 1756400 401800 2170 81 370 91 324 291 1.9 ALMAR(HAREF) 1756400 401300 2170 81 370 91 324 291 1.9 ATHAR 1756400 401300 2170 82 370 82 280	QWADER(ALWAD) 1760700 400500 2080 83 225 10 83 225 ALWADI 1760800 401100 2070 72 315 10 79 270 220 44.8 3.2 ALWADI 1760800 401100 2070 72 315 10 79 270 220 44.8 3.2 ALWADI 1760800 401600 2070 72 315 10 79 270 220 44.8 3.2 ALWADI 1760800 401600 2050 89 225 8 132 150 207 150 7.5 25.6 1.9 ATHAR (HAREF) 1755200 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1755500 401300 2170 81 370 200 7.5 25.6 1.9 ATHAR 1755500 401300 2170 81 <	8	ALWADI	1760700	399900	2100			2				ß					800		1500	
ALWADI 17503600 401100 2070 72 315 10 79 270 220 44.8 3.2 SHUK HUMIDAN 1760300 401300 2050 79 270 220 44.8 3.2 SHUK HUMIDAN 1760300 401300 2060 89 225 8 132 150 200 241 100 7.5 25.6 1.9 AL MAYAMAL 1780500 401500 2070 81 370 241 100 7.5 25.6 1.9 ATHAR 1755200 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1755500 401300 2170 82 370 8 224 291 7.5 25.6 1.9 ATHAR 1755500 401300 2170 82 370 82 280 281 1.9 ATHAR 1765500 405500 182 370	ALWADI 1760800 401100 2070 72 315 10 79 270 220 44.8 32 SHUK HUMIDAN 1760800 401600 2070 72 315 10 79 270 220 44.8 32 SHUK HUMIDAN 1760800 401600 2060 89 225 8 132 150 20 44.8 32 AL MAYMAL 1760500 401600 2060 89 2255 8 205 280 241 100 75 25.6 1.9 ATHAR (HAREF) 1755200 401300 2170 81 370 91 324 291 75 25.6 1.9 ATHAR 1755500 401300 2170 81 370 291 75 25.6 1.9 THIBIN 1765500 401300 2170 82 370 82 291 7.5 25.6 1.9 THIBIN 1765500 408500	8	GWADER(ALWADI)	1760700	400500	2080	æ	325	ţ			8	ž								
SHUK HUMIDAN 1760900 401300 2000 89 225 8 132 150 200 150 AL MATAL 1780500 401600 2060 89 225 8 132 150 201 150 AL MATARL 1780500 401600 2060 81 370 265 280 241 100 7.5 25.6 1.9 ATHAR 1756200 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1766500 401300 2170 82 370 82 280 201	SHUK HUMIDAN 1760900 401300 2050 89 225 8 132 150 200	101	ALWADI	1760800	401100	20702	2	315	ç			8 P	96	~~~~		1 .8	3.2			1600	
AL MATANAL 1780500 401600 2060 87 265 8 205 260 241 100 7.5 25.6 1.9 ATHAR (HAREF) 1756200 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1756400 401300 2170 82 370 8 28 291 7.5 25.6 1.9 THIBIN 1765500 405500 1820 82 370 8 280 280 1.9 FHIBIN 1765500 405500 1820 82 370 8 228 150	AL MAXAL 1780500 401600 2060 87 265 8 205 260 241 100 7.5 25.6 1.9 ATHAR (HAREF) 1756200 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 7.5 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 7.5 25.6 1.9 THIBIN 1765500 401300 2170 82 370 82 280 1.9 BELSEN 1783200 408300 1965 86 450 10 90 370	2	SHUK HUMIDAN	1760800	401300	2060	8	ž	2 α	133	160	2 8		8				3200			
ATHAR (HAREF) 1755200 401300 2170 81 370 91 24 291 75 25.6 1.9 ATHAR 1755400 401300 2170 81 370 91 324 291 75 25.6 1.9 ATHAR 1765500 405500 1820 82 370 8 82 286 150	ATHAR (HAREF) 1756200 401300 2170 81 370 24 291 224 291 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 75 25.6 1.9 ATHAR 1756400 401300 2170 81 370 91 324 291 75 25.6 1.9 THIBIN 1765500 406500 1820 82 370 8 250	8	AL MA'AMAL	1760600	401600	2060	87	i ž	ο α			20	ŝ		1			1000			
ATHAR 1756400 401300 2170 5170 5170 5170 5170 5170 5170 5170 5	ATHAR 1756400 401300 2170 91 324 291 THBIN 1765500 406500 1820 82 370 8 290 BELSEN 1763200 406300 1965 86 450 10 90 370	110	ATHAR (HAREF)	1756200	401300	2170	5		,		3	2	ŧ	3	6.	9.62	6.L	8		450	
THIBIN 1765500 405500 1820 82 370 8 82 286 150	THIBIN 1765500 405500 820 82 83	E	ATHAR	1756400	401300	2170	5	2				5	364								
	BELSEN 1783200 408300 1965 88 450 10 90 200 130 370	112		1786500	406500	1820	8	370	æ			8	306							1500	
JELEVEN 1783200 408300 1965 86 4Kn 10		118	BELSEN	1763200	408300	1965	8	4EO	, ÷			8 8	007	2				8	18.0		

Attaf: Appendix 3

YEM/87/015

. . . .

x

NORADEP

.

Page 3

.

Attaf: Appendix 4

APPENDIX 4

STAFF PARTICIPATING

IN THE

WELL INVENTORY

e.

NORADEP

APPENDIX 4 STAFF PARTICIPATING IN THE WELL INVENTORY

Staff that participated in the well inventory of the Attaf Plain

The following SSHARDA engineers were involved in the well inventory:

Wasfi Mohd Abdo Alezzi (team leader) Yahya Yahya Abdul Khader Sultan Hassan Al Barakani

Drivers

Ali Khorap Nasser Atef

Database entry was carried out by the SSHARDA engineers:

Samir Al Shamiri Abdul Al Shamiri

Planning, supervision and reporting

WJ Honijk (hydrogeologist)