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The equations of climate are, in principle, known. Why then is it so hard to formulate a bias-
free model of climate? Here, some ideas in nonlinear dynamics are explored to try to answer this
question. Specifically it is suggested that the climatic response to physically different forcings
shows a tendency to project onto structures corresponding to the systems natural internal
modes of variability. This is shown using results from complex climate models and from
the relatively simple Lorenz three-component model. It is suggested that this behaviour is
consistent with what might be expected from the fluctuation–dissipation theorem. Based on
this, it is easy to see how climate models can easily suffer from having errors in the
representation of two or more different physical processes, whose responses compensate
one another and hence make individual error diagnosis difficult. A proposal is made to try to
overcome these problems and advance the science needed to develop a bias-free climate model.
The proposal utilises powerful diagnostics from data assimilation. The key point here is that
these diagnostics derive from short-range forecast tendencies, estimated long before the model
has asymptotically settled down to its (biased) climate attractor. However, it is shown that
these diagnostics will not identify all sources of model error, and a so-called ‘‘bias of the second
kind’’ is discussed. This latter bias may be alleviated by recently developed stochastic
parametrisations.

Keywords: Model bias; Analysis increments; Nonlinear dynamics; Stochastic parametrisations

1. Introduction

Climate prediction models play a crucial role in today’s society, governing, for example,

decisions on preparing regionally for climate-related malaria epidemics, or the extent to

which the global community commits to radical reductions in greenhouse gas emissions.
However, such models are not perfectly faithful representations of reality. Take

any climate model, integrate it for a period of years so that it has asymptoted to its

climatology, and it will be relatively easy to find specific meteorological variables which

are biased against corresponding observations. Examples might include seasonal-mean
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upper tropospheric temperature in high latitudes, near-surface winds over the
equatorial Pacific, or rainfall in the Asian monsoon region.

Whilst it is easy to identify these biases, it is another matter to determine the causes
of these biases. In section 2, we discuss a specific example where what appears to be a
climate bias associated with excessive drag over the ocean is in fact associated with
insufficient drag over land. In section 3, this class of problem is illustrated in a much
simpler setting, using the Lorenz (1963) system. The results from this study point us to
a rather generic perspective on the notion of model bias, based on two rather generic
features of dynamical systems: the fluctuation–dissipation theorem and the non-self
adjointness of linearised dynamical operators. This leads us to a novel perspective on
why it has proven so hard to eliminate model bias in climate models. In section 4,
a potential solution to the problem is discussed based on the method of analysis
increments. For this method to be viable in practice, the model in question should have
a data assimilation capability. Currently not many climate models have such capability.

This proposal is not, however, a panacea. In section 5, a type of climate bias is
discussed which cannot be diagnosed from biases in analysis increments – one related to
the functional representation of sub-grid processes as deterministic. This ‘‘bias of the
second kind’’ is very much associated with the issue of structural uncertainty in
weather and climate models, and has led to the development of stochastic rather than
deterministic parametrisations.

This article is dedicated to Raymond Hide in celebration of his 80th birthday.
Raymond was the single most influential person in the first author’s decision to move
fields from his doctoral topic in general relativity theory. Raymond’s influence
continued during TNP’s early years in the Met Office. During this period TNP spent
many a morning tea break – often extended to lunch time – learning about rotating
fluids and dynamo theory. This article touches on many of Raymond’s interests – the
angular momentum balance of the atmosphere, on predictability, turbulence and chaos
(many of Ed Lorenz’s formative ideas on chaos were motivated by Raymond’s rotating
annulus experiments), and on ideas in non-equilibrium thermodynamics. This latter
topic has a special resonance for TNP: in the last year of his doctoral training, TNP’s
supervisor, the cosmologist Dennis Sciama, began a programme of work aimed at
deriving Hawking’s famous black-hole radiation formula from the fluctuation–
dissipation theorem and the principle of maximum entropy production. TNP was
astonished to learn from Raymond that the same ideas in non-equilibrium thermody-
namics were also being exploited to understand climate (e.g. Paltridge 1975).
As mentioned below, ideas in non-equilibrium thermodynamics may also be relevant
in the discussion about model diagnosis of climate model bias.

2. Climate models and Jeffrey’s theory of the westerly flow

As mentioned in section 1, comprehensive weather and climate prediction models play a
crucial role in society today. One would like to incorporate as much as possible the
(partial differential equation) laws of physics into these models. But high-resolution
models are computationally expensive: a doubling of resolution can result in an increase
in computing time of up to 24 (the exponent representing the dimension of space-time).
What is a minimal resolution needed if we are only interested in simulating horizontal
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scales of, let us say, a thousand kilometres or more? Perhaps a model with grid point
spacing of a few hundred kilometres might be sufficient.

Figure 1(a) shows the climatological boreal winter surface pressure in Northern
and Southern Hemispheres (based on ECMWF analyses) whilst figure 1(b) shows the
equivalent fields simulated by a (Met Office) climate model (c. 1980s) run with a grid
with 5� spacing in the longitudinal direction and 7.5� in the latitudinal direction.

If one was to make a very broad-brush diagnosis of this simulation, one might say
that the pressure distribution was not too unrealistic in the Northern Hemisphere,
but was very poor in the Southern Hemisphere: by geostrophy, one could deduce
from figure 1(b) that instead of ‘‘roaring forties’’, the model has ‘‘whispering forties’’.
Since most of the Southern Hemisphere surface is ocean, perhaps one might conclude
that the cause of the model bias lies in an overestimation of the model’s drag coefficient
over sea.

However, instead of pursuing this idea further, suppose a further set of simulations
is performed at the higher horizontal resolution with grid point spacing half that
in figure 1(b). The results are shown in figure 1(c). Without any change to the oceanic
drag coefficient, the Southern Hemisphere surface pressure distribution is now
simulated quite well. However, a price is paid for this improvement: the Northern
Hemisphere surface pressure simulation deteriorates and the corresponding surface
flow is excessively westerly.

What is going on? First, let us recall Jeffrey’s (1926) seminal contribution to the
theory of the atmospheric general circulation: the surface winds in midlatitudes are
maintained against friction by a poleward flux of angular momentum from lower
latitudes, generated by the extratropical weather disturbances. Although at the time this
idea seemed contrary to the notion that turbulent fluxes should be downgradient,
development of the theory of baroclinic instability confirmed Jeffrey’s proposal. In
particular, the flux of angular momentum needed to maintain the midlatitude westerlies
against frictional drag can be generated provided that the baroclinic eddy troughs and
ridges have a tilted north east/south west orientation. Resolving such tilted structures
in a numerical model may require significantly more meridional resolution than
correspondingly structures without tilt. This was indeed found in the idealised
baroclinic lifecycle experiments of Simmons and Hoskins (1976).

Hence, by increasing model resolution, the ‘‘whispering forties’’ bias has been cured.
But why then, has Northern Hemisphere bias been worsened by increasing resolution?
The answer is that in the Northern Hemisphere, diagnosis of the causes of bias in the
low resolution model is compounded by a compensation of errors. The model not only
had an inadequate representation of angular momentum flux associated with the
baroclinic eddies, but also had an inadequate representation of frictional coupling to
the land surface. In particular the versions of the model shown in figure 1(b) and (c) had
no parametrised representation of momentum coupling of the atmosphere to the solid
earth associated with unresolved orography. Since part of this momentum coupling is in
the form of orographically forced gravity waves, a parametrisation of the vertical
propagation and breaking of such waves in the lower stratosphere was developed
once the biases of 2� � 3� (or T42) and higher resolution models became apparent
(Palmer et al. 1986).

Hence, what began as a suggestion that the Met Office model had too much drag over
the ocean, ended by concluding that the real problem was insufficient drag over land!
Along the way, it was found that inadequate representation of horizontal baroclinic
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Figure 1. Boreal winter (December–February) surface pressure for Northern Hemisphere (left) and
Southern Hemisphere (right). (a) From observations, (b) from a low resolution model simulation, and
(c) from a model whose resolution is double that in (b).
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wave fluxes was compensating for insufficient representation of vertical orographic

gravity-wave fluxes. How could two completely different processes have such

compensating effects on the climate of the model?

3. The forced Lorenz model and the fluctuation-dissipation theorem

To pursue this question further, consider a much simpler system, the ‘‘forced’’ Lorenz

(1963) model:

_X ¼ ��Xþ �Yþ f cos �, ð1aÞ

_Y ¼ �XZþ rX� Yþ f sin �, ð1bÞ

_Z ¼ XY� bZ, ð1cÞ

where � ¼ 10, r ¼ 28, b ¼ 4=3, and a vector F ¼ ðFX,FY,FZÞ ¼ ð f cos �, f sin �, 0Þ has
been added to the canonical Lorenzian equations. Like the weather and climate

models discussed above, the system (1a–c) is chaotic for sufficiently small f and

therefore has limited predictability.
Let us suppose that the ‘‘true’’ system is the unforced Lorenz system (with f¼ 0),

and our ‘‘model’’ for the true system has a systematic error, represented by f¼ 10 and

some � ¼ �0. In the discussion below, we will fix �0 ¼ 3�=4. However, suppose this value

is ‘‘hidden’’ from us. Our job is to diagnose the systematic error of the ‘‘model’’ to

determine the value of �0.
Figure 2(a) shows a time series of the X-component of the unforced Lorenz model –

‘‘truth’’. Figure 2(b) shows a time series of the X-component of the state vector of

the ‘‘model’’. As can be seen, the probability of finding the state in the regime with

positive X is greater than what it would be from ‘‘observations’’ of the ‘‘true’’ system

(figure 2(a)). Hence, not knowing �0, a reasonable guess would be that �0 ¼ 0. The time

series of the X-component generated with �0 ¼ 0 is shown in figure 2(c), and indeed it

does resemble, in some statistical sense at least, the time series in figure 2(b). However,

the X-component of the forcing error FX with �0 ¼ 0 is in fact opposite in sign to the

value associated with the actual value �0 ¼ 3�=4 used for our erroneous model.
Figure 3 summarises the relationship between the angle � and the direction  

associated with the time-mean response of the model to the forcing F, i.e. the angle to

the X-axis of the line which joins the time-mean state of the forced model and the

time-mean state of the unforced model – the origin in the X–Y plane. Figure 3 shows

that, for a selection of values �, there is a tendency for the response to point along the

diagonal in the X–Y plane where  ¼ �=4. Generally, the response does not lie exactly

along this line, but to a first approximation it does. What is special about this line?

It can be shown (Selten 1995) that this line corresponds to the dominant empirical

orthogonal function (EOF) of the unforced Lorenz model; that is, it corresponds to

the leading eigenvector of the lag-zero covariance matrix of the (three-dimensional)

state vector of the unforced system.
This opens a possible link to the example in the previous section. It is well-known

that the so-called annular modes correspond to dominant EOFs for the atmosphere.

The Northern Annular Mode, or Arctic Oscillation, (Thompson and Wallace 1998)
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corresponds largely to fluctuations in the zonal wind in the Northern Hemisphere, with
the Southern Annular Mode playing a corresponding role in the Southern Hemisphere.
As we saw, there was a strong response of the model to changes in resolution in terms
of zonal modes, and in the low resolution model, there appeared to be a compensation
in terms of these zonal structures between insufficient sub-grid vertical frictional
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Figure 2. Time series of the X-component: (a) of the unforced Lorenz system, (b) and (c) of the forced
Lorenz system (1a–c) for � ¼ 3�=4 and � ¼ 0, respectively.
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coupling over land and insufficient horizontal momentum transport (primarily over the

ocean). But why should the dominant EOF of a dynamical system appear to play a key

role in determining the response to some imposed forcing?
One of Einstein’s papers, published in his ‘‘Annus Mirabilis’’ of 1905 was on the

theory of Brownian motion (Einstein 1905). In this article, Einstein established that the

same random forces which cause the erratic movement of a particle in Brownian motion

would also cause drag if the particle were pulled through the fluid. This result in turn

became developed and generalised to the so-called fluctuation–dissipation theorem

in statistical thermodynamics, quantifying the relation between the fluctuations of a

system in thermal equilibrium and the response of the system to applied perturbations.

Leith (1975) has applied the fluctuation–dissipation theorem to understand the forced

response of the atmosphere. Let

_X ¼ F½X�, _X0 ¼ F½X0� þ �f, ð2a;bÞ

and �X ¼ X0 � X, then (Leith’s version of) the fluctuation dissipation theorem states

� �X ¼ L�f, ð3Þ

where the overbar represents a long-time average and

L ¼

Z 1
0

Cð�ÞC�1ð0Þd�, ð4Þ

where C is the lag-� covariance matrix of X.
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Figure 3. Time-mean response to forced Lorenz system (grey arrow) in relation to direction of forcing
(black arrow) in the X–Y plane: (a) � ¼ 0, (b) � ¼ �=4, (c) � ¼ �=2 and (d) � ¼ 3�=4.
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One can question whether the fluctuation–dissipation theorem holds quantitatively
for a system like the atmosphere, far from equilibrium. Also, the theorem will not hold
quantitatively for the dissipative Lorenz system either. Nevertheless, qualitatively we
see in the fluctuation–dissipation theorem the notion that the response of a system to
some prescribed forcing can be strongly conditioned by that system’s internal modes of
variability, i.e. the response to the forcing will be conditioned by the projection of �f
in the direction of the leading eigenvectors of L. Additionally, given the non-self
adjoint nature of L (Farrell and Ioannou 1996), perturbations which optimally excite
the leading eigenvector of L need not point in the direction of this eigenvector (figure 4)

What to do? The results above relate to problems of diagnosing the cause of
model bias from integrations where the model has asymptoted towards its climatology.
In principle, this suggests a relatively simple solution: perform the diagnosis well before
the model integrations have asymptoted to climatology. We study this in the following
section.

4. Can a 6-h weather forecast help determine Earth’s climate 100 years from now?

Climate change is the defining issue of our age, yet predictions of climate for the
end of this century remain remarkably uncertain. In large part this is because the
amplification of increases in greenhouse gases by cloud-radiative interactions remains
uncertain. This is turn arises because the parametrised representation of clouds
themselves is especially uncertain.

The issue of uncertainty was put into sharp focus by analysis of the
http://climateprediction.net ensemble of climate change projections. According to
Stainforth et al. (2005), climate sensitivity is predicted to be as large as 12K or more. As
discussed in Rodwell and Palmer (2007), many of the models producing such strong
global warming signals had convective parametrisations with anomalously small values
of the convective entrainment parameter.

Although the amplification of the effect of enhanced CO2 by convective cloud
systems will occur on timescales of decades, the intrinsic timescale associated with a
deep convective system itself is typically on the order of hours. Hence it should
in principle be possible to assess whether the anomalously small values of convective
entrainment are realistic or not, by studying the performance of such models in short-
range weather prediction mode.

Figure 4. Schematic illustration of perturbation growth in a highly non-self adjoint system. The
perturbation �0 projects onto the dominant eigenvector �1. The optimal perturbation 	0 projects onto the
adjoint 
1 of �1. From Palmer (1996).
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This can indeed be done, as reported in Rodwell and Palmer (2007). The technique
is illustrated in figure 5 based on the technique proposed by Klinker and Sardeshmukh
(1992). Essentially the idea is to look at the mean ‘‘analysis increment’’ averaged over a
month of four-times-a-day atmospheric analyses. Here an analysis increment is defined
as the difference between a 6-h forecast and the corresponding objective analysis of the
contemporary observations, valid at the same time as the forecast. These objective
analyses are used to initialise weather predictions. Over a sufficiently long-time series
of analyses, the mean analysis increment should be close to zero. However, if the model
is biased against the observations, then the mean analysis increment will be non-zero.

This approach to model diagnosis overcomes the constraints of the fluctuation–
dissipation theorem because the approach is based on a diagnosis of model output well
before any asymptotic climatological state is reached. In practical terms this means, for
example, that mean analysis increments associated with an error in the representation of
orographic gravity wave momentum–flux convergence will be largest in the momentum
equation and in the lower stratosphere above regions of large sub-grid orography where

(a)

0 1 2 3 4
Time (cycles)

T

(b)

Observations
Analysis

Analysis increment

First guess forecast

0 1 2 3 4
Time (cycles)

T

Figure 5. (a) Schematic diagram of data assimilation for an unbiased model and (b) as (a) but for a biased
model.
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such waves tend to break. Indeed this was one of the first applications of this technique

(Klinker and Sardeshmukh 1992).
Rodwell and Palmer (2007) found that the mean analysis increment in a model with

anomalously small entrainment parameter (as used in the climateprediction.net

experiments) was substantially larger than that from a model with more typical

values for this parameter.
Analysis increments provide a diagnostic tool that is used to assess routinely biases

in the ECMWF system (Rodwell and Jung 2008). We propose here that it could prove

an invaluable tool for climate modelling, in reducing bias in models and in reducing

uncertainty in projections of climate change. However, in order to implement such

a tool, the modelling system must have data assimilation capability. Currently, climate

prediction models do not typically have this capability. However, in recent years, the

concept of seamless prediction (Palmer et al. 2008) is bringing weather forecast and

climate prediction models closer together. This will allow this technique to be explored

more thoroughly in climate prediction mode. For the climate problem, one particularly

relevant extension of this technique will be to address systematic biases in the ocean

model component of climate models. Whether or not the method could be used, once

carbon dioxide concentrations are properly assimilated into Earth system models, to

constrain model representations of the carbon cycle, and so on, remains to be seen.

5. Bias of the second kind

Have we solved the problem of diagnosing the causes of model bias? That is, is it

sufficient to focus on the initial tendencies of the model from an ensemble of initial

states? Clearly this technique will not work for diagnosing very long-timescale

processes, e.g. associated errors in the representation of the carbon cycle. On the

other hand, many of the important uncertainties in climate models are associated with

rather fast timescale processes linked to clouds, boundary layer turbulence etc.
However, as discussed in this section, there is a second type of model error which will

not be revealed by this type of diagnosis.
To see this, let us return to the Lorenz (1963) system, this time written in terms of the

three principal components of the model (Selten 1995):

_a1 ¼ 2:3a1 � 6:2a3 � 0:49a1a2 � 0:57a2a3, ð5aÞ

_a2 ¼ �62� 2:7a2 þ 0:49a21 � 0:49a23 þ 0:14a1a3, ð5bÞ

_a3 ¼ �0:63a1 � 13a3 þ 0:43a1a2 þ 0:49a2a3: ð5cÞ

Now, it turns out that the third principal component only explains about 4% of the
variance of the total system. We might therefore consider parametrising the equation

for the third principal component in the following form:

_a1 ¼ 2:3a1 � 6:2a3 � 0:49a1a2 � 0:57a2a3, ð6aÞ

_a2 ¼ �62� 2:7a2 þ 0:49a21 � 0:49a23 þ 0:14a1a3, ð6bÞ

_a3 ¼ Pða1, a2;�,�, . . .Þ, ð6cÞ
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where P is some deterministic formula and �,�, . . . are parameters. Figure 6 shows
integrations of the full model (equations (5a–c)) and the parametrised model (equations
(6a–c)) where P ¼ �a1 þ �a2.

It can be seen that the long-term climate of the parametrised model is clearly not
chaotic. This is a consequence of the Poincaré–Bendixson theorem, whereby the state
space of a chaotic system based on autonomous differential equations must have at
least 3 dimensions ((6a–c) is an autonomous system with only two degrees of freedom).
But on the other hand, it can also be seen that the parametrised model is quite accurate
for short-range forecasts. In this case, the analysis increment approach would not
diagnose the fault with the parametrised model, since in the short range the
parametrised model is clearly skilful.

What is this fault? Here the model deficiency lies in the use of a deterministic function
P for the parametrisation: the specific linear form above is irrelevant. If we replace the

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

EOF1

E
O

F
2

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

EOF1

E
O

F
2

(b)

(a)

Figure 6. (a) Trajectories of Lorenz model in a principal component basis and (b) solid lines as (a), dashed
lines for a 2D model with deterministically parametrised third principal component.
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deterministic parametrisation of equation (6c) with a stochastic parametrisation

_a1 ¼ 2:3a1 � 6:2a3 � 0:49a1a2 � 0:57a2a3, ð7aÞ

_a2 ¼ �62� 2:7a2 þ 0:49a21 � 0:49a23 þ 0:14a1a3, ð7bÞ

a3 ¼ �, ð7cÞ

where � is a stochastic variable, then the broad structure of the Lorenz attractor
is simulated reasonably well, as shown in figure 7(a). The amplitude and temporal

autocorrelation have to be correctly tuned to give this structure. Figure 7(b) shows

a simulation of equations (7a–c) with weaker noise. The simulation shows a bias in both

mean state and internal variability.
Hence, we see that there is more to parametrisation error than the determination

of the parameters or the functional form of the parametrisation. The very assumption
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Figure 7. (a) Lorenz model with stochastically parametrised third principal component and (b) as (a) but
with smaller amplitude noise.
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of a deterministic link between the unresolved scales and the resolved scales is here
brought into question. We will refer to a bias resulting from such a structural
uncertainty as a ‘‘bias of the second kind’’. The development of stochastic
parametrisations in numerical weather prediction models addresses some of these
deficiencies (Buizza et al. 1999, Lin and Neelin 2002, Palmer 2001, Craig and Cohen
2006, Palmer and Williams 2010). In a nonlinear system, deficiencies in the lack of
sub-grid variability can lead to systematic bias in the climate model, but, as suggested
in figure 6, the timescale for the development of such biases can be quite slow. Hence,
how are we to diagnose model deficiencies associated with the lack of sub-grid
variability?

One idea that seems to have considerable potential is by developing stochastic
parametrisation through coarse-grain budgets of cloud-resolving models (Shutts and
Palmer 2007). For example, the cloud-resolving model may have a resolution of 1 km
and one estimates coarse-grain budgets over boxes of size c. 100 km, a typical dimension
for a climate model grid box. Here one treats cloud-resolving model output as a
surrogate for truth. By treating the cloud-resolving model output as truth, one has exact
estimates of the sub-100-km grid tendencies. Based on this one can estimate probability
distributions of sub-100-km grid tendencies, conditioned on the 100 km average flow.
This method has been used to provide a partial validation for stochastic parametrisa-
tions used at ECMWF: both the Stochastically Perturbed Parametrisation Tendency
Scheme, and the Stochastic Backscatter Scheme (Palmer et al. 2009).

An interesting recent development in this respect has been that of ensemble
data assimilation. A relevant diagnostic in ensemble data assimilation is the spread of
ensemble at the 6 h lead time. This should be balanced by the ensemble mean analysis
increment. The extent to which it is not is a measure of the imperfection of the ensemble
of data assimilations in representing analysis error, here a combination of observation
error and model error. Recent studies (M. Bonavita, ECMWF) of this diagnostic
suggest areas where stochastic parametrisation could be improved. In this way, it is
possible that the analysis increment method can be extended to diagnose errors in
stochastic parametrisation. However, at present these ideas are at a rudimentary stage
of development.

6. Conclusions

Climate prediction models provide the scientific input which underpins climate change
mitigation treaties and adaptation strategies. Whilst there has been considerable
improvement in climate simulations over recent years, climate models have quantifiable
shortcomings and develop biases of magnitude comparable to the climate change
signals such models are trying to predict. It is clearly important to try to reduce these
biases, and yet diagnosis of model error is difficult not least because of the problem
of compensating errors: the response to errors in the representation of two quite
different processes in a climate model can partially cancel each other out. This problem
of compensating errors can be illustrated in relatively simple nonlinear models, but may
be ultimately linked to rather generic properties of nonlinear systems.

A technique is proposed to overcome some of these problems, based on the concept
of analysis increments. However, this technique requires the model to come with a data
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assimilation system: currently few climate models have this capability. However, with
the development of seamless prediction systems, there is a prospect of significant
advances in the future.

Finally, a ‘‘bias of the second kind’’ has been discussed. This is neither associated
with the functional form of sub-grid parametrisations, nor of the values of the free
parameters associated with such parametrisations, but rather with the fact that such
parametrisations are deterministic. The development of stochastic parametrisations,
aided by coarse-grain budget analyses from cloud-resolving models, may provide the
means to reduce such biases.

Climate prediction remains one of the most computationally challenging problems in
science and it has proven difficult to reduce uncertainty in estimates of anthropogenic
global warming over the years. The analysis increment techniques proposed here,
when properly integrated with other, more conventional diagnostic methodologies,
provide some grounds for believing that significant reductions of uncertainty may in
fact be possible in future years.
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